We report label-free small molecule sensing on nanoporous gold disks functionalized with stabilized Guanine-quadruplex (G4) moieties using surface-enhanced Raman spectroscopy (SERS). By utilizing the unique G4 topological structure, target molecules can be selectively captured onto nanoporous gold (NPG) disk surfaces via π-π stacking and electrostatic attractions. Together with high-density plasmonic "hot spots" of NPG disks, the captured molecules produce a remarkable SERS signal. Our strategy represents the first example of the detection of foreign molecules conjugated to nondouble helical DNA nanostructures using SERS while providing a new technique for studying the formation and evolution of G4 moieties. The molecular specificity of G4 is known to be controlled by its unit sequence. Without losing generality, we have selected d(GGT)GG sequence for the sensing of malachite green (MG), a known carcinogen frequently abused illegally in aquaculture. The newly developed technique achieved a lowest detectable concentration at an impressive 50 pM, two orders of magnitude lower than the European Union (EU) regulatory requirement, with high specificity against potential interferents. To demonstrate the translational potential of this technology, we achieved a lowest detectable concentration of 5.0 nM, meeting the EU regulatory requirement, using a portable probe based detection system.
A rapid and cost-effective colorimetric sensor has been developed for the detection of bacteria (Bacillus subtilis was selected as an example). The sensor was designed to rely on lysozyme-capped AuNPs with the advantages of effective amplification and high specificity. In the sensing system, lysozyme was able to bind strongly to Bacillus subtilis, which effectively induced a color change of the solution from light purple to purplish red. The lowest concentration of Bacillus subtilis detectable by the naked eye was 4.5 × 10(3) colony-forming units (CFU) mL(-1). Similar results were discernable from UV-Vis absorption measurements. A good specificity was observed through a statistical analysis method using the SPSS software (version 17.0). This simple colorimetric sensor may therefore be a rapid and specific method for a bacterial detection assay in complex samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.