Artificial van der Waals heterostructures with two-dimensional (2D) atomic crystals are promising as an active channel or as a buffer contact layer for next-generation devices. However, genuine 2D heterostructure devices remain limited because of impurity-involved transfer process and metastable and inhomogeneous heterostructure formation. We used laser-induced phase patterning, a polymorph engineering, to fabricate an ohmic heterophase homojunction between semiconducting hexagonal (2H) and metallic monoclinic (1T') molybdenum ditelluride (MoTe2) that is stable up to 300°C and increases the carrier mobility of the MoTe2 transistor by a factor of about 50, while retaining a high on/off current ratio of 10(6). In situ scanning transmission electron microscopy results combined with theoretical calculations reveal that the Te vacancy triggers the local phase transition in MoTe2, achieving a true 2D device with an ohmic contact.
We demonstrate a room temperature semiconductor-metal transition in thin film MoTe2 engineered by strain. Reduction of the 2H-1T' phase transition temperature of MoTe2 to room temperature was realized by introducing a tensile strain of 0.2%. The observed first-order SM transition improved conductance ∼10 000 times and was made possible by an unusually large temperature-stress coefficient, which results from a large volume change and small latent heat. The demonstrated strain-modulation of the phase transition temperature is expected to be compatible with other TMDs enabling the 2D electronics utilizing polymorphism of TMDs along with the established materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.