This paper proposes an unsupervised Multisource Domain Adaptation algorithm with Graph convolution network and Multi-alignment in mixed latent space (MDA-GM), which leverages domain labels, data structure, and category labels in a unified network but improve domain-invariant semantic representation by several innovations. Specifically, a novel data structure alignment is proposed to exploit the inherent properties of different domains while using current domain alignment and classification result alignment. Through this design, category consistency can be considered in both latent space, and domain and structure discrepancy between different source domains and the target domain can be eliminated. Moreover, we also use category alignment based on both CNN and GCN features to optimize category decision boundary. Experiment results show that the proposed method brings sufficient improvement especially for adaptation tasks with large shift in data distribution.
Accurate segmentation and classification of pulmonary nodules are of great significance to early detection and diagnosis of lung diseases, which can reduce the risk of developing lung cancer and improve patient survival rate. In this paper, we propose an effective network for pulmonary nodule segmentation and classification at one time based on adversarial training scheme. The segmentation network consists of a High-Resolution network with Multi-scale Progressive Fusion (HR-MPF) and a proposed Progressive Decoding Module (PDM) recovering final pixel-wise prediction results. Specifically, the proposed HR-MPF firstly incorporates boosted module to High-Resolution Network (HRNet) in a progressive feature fusion manner. In this case, feature communication is augmented among all levels in this high-resolution network. Then, downstream classification module would identify benign and malignant pulmonary nodules based on feature map from PDM. In the adversarial training scheme, a discriminator is set to optimize HR-MPF and PDM through back propagation. Meanwhile, a reasonably designed multi-task loss function optimizes performance of segmentation and classification overall. To improve the accuracy of boundary prediction crucial to nodule segmentation, a boundary consistency constraint is designed and incorporated in the segmentation loss function. Experiments on publicly available LUNA16 dataset show that the framework outperforms relevant advanced methods in quantitative evaluation and visual perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.