We report that the insoluble Fe-HA complex, which was synthesized with both commercial Aldrich humic acid (HA) and natural HA, functions as a solid-phase electron mediator (EM) for the anaerobic microbial dechlorination of pentachlorophenol. Spectroscopic characterizations and sequential Fe extraction demonstrated that the Fe-HA complex was predominated with Na4P2O7-labile Fe (represented as the organically bound Fe fraction) and poorly ordered Fe fraction (the fraction left in the residue after the sequential extraction), which were associated with different possible binding processes with carboxylate and phenolic groups. The change in the electron-mediating activity caused by Fe extraction indicated that the electron-mediating function of the Fe-HA complex is attributable to the Na4P2O7-labile Fe fraction. The Fe-HA complex also accelerated the microbial reduction of Fe(III) oxide, which suggested the presence of multiple electron-mediating functions in the complex. The electron shuttle assay showed that the Fe-HA complex had an electron-accepting capacity of 0.82 mequiv g(-1) dry Fe-HA complex. The presence of redox-active moieties in the Fe-HA complex was verified by cyclic voltammetry analysis of the sample after electrical reduction, with a redox potential estimated at 0.02 V (vs a standard hydrogen electrode).
Complete mineralization of 50 µM of pentachlorophenol (PCP) was achieved anaerobically under continuous flow conditions using two columns connected in series with a hydraulic retention time of 14.2 days, showing the highest reported mineralization rate yet of 3.5 µM day(-1). The first column, when injected with a reductive PCP dechlorinating consortium, dechlorinated PCP to mainly phenol and traces of 3-chlorophenol (3-CP) using lactate supplied continuously as an electron donor. The second column, with an anaerobic phenol degrading consortium, decomposed phenol and 3-CP under iron-reducing conditions with substantial fermentative degradation of organic compounds. When 20 mM of lactate was introduced into the first column, the phenol degradation activity of the second column was lost in a short period of time, because the amorphous Fe(III) oxide (FeOOH) that had been packed in the column before use was depleted by lactate metabolites, such as acetate and propionate, flowing into the second column from the first column. The complete mineralization of PCP was maintained for a long period by reducing the lactate concentration to 4 mM, effectively extending the longevity of second-column activity with no depletion of FeOOH for more than 200 pore volumes (corresponding to 3,000 days). The carbon balance showed that 50 µM PCP and 4 mM lactate in the influent had transformed to CO(2) (81%) and CH(4) (3%) and had contributed to biomass growth (8%). A comparison of the microbial consortia introduced into the columns and those flowing out from the columns suggested that the introduced population did not flow out during the experiments, although the microbial composition of the phenol column was considered to be affected by the inflow of microbes from the PCP dechlorination column. These results suggest that a sequential combination of reductive dechlorinating and anaerobic oxidizing consortia is useful for anaerobic remediation of chlorinated aromatic compounds in a microbial permeable reactive barrier.
The dechlorination and mineralization of pentachlorophenol (PCP) was investigated by simultaneously or sequentially combining two different anaerobic microbial populations, a PCP-dechlorinating culture capable of the reductive dechlorination of PCP to phenol and phenol- degrading cultures able to mineralize phenol under sulfate- or iron-reducing conditions. In the simultaneously combined mixture, PCP (about 35 microM) was mostly dechlorinated to phenol after incubation for 17 days under sulfate-reducing conditions or for 22 days under iron-reducing conditions. Thereafter, the complete removal of phenol occurred within 40 days under both conditions. In the sequentially combined mixture, most of the phenol, the end product of PCP dechlorination, was degraded within 12 days of inoculation with the phenol degrader, without a lag phase, under both sulfate- and iron-reducing conditions. In a radioactivity experiment, [14C-U]-PCP was mineralized to 14CO2 and 14CH4 by the combined anaerobic microbial activities. Analysis of electron donor and acceptor utilization and of the production and consumption of H2, CO2, and CH4 suggested that the dechlorinating and degrading microorganisms compete with other microorganisms to perform PCP dechlorination and part of the phenol degradation in complex anoxic environments in the presence of electron donors and acceptors. The presence of a small amount of autoclaved soil slurry in the medium was possibly another advantageous factor in the successful dechlorination and mineralization of PCP by the combined mixtures. This anaerobic-anaerobic combination technology holds great promise as a cost-effective strategy for complete PCP bioremediation in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.