Background It is of great clinical significance to develop an accurate computer aided system to accurately diagnose the breast cancer. In this study, an enhanced machine learning framework is established to diagnose the breast cancer. The core of this framework is to adopt fruit fly optimization algorithm (FOA) enhanced by Levy flight (LF) strategy (LFOA) to optimize two key parameters of support vector machine (SVM) and build LFOA-based SVM (LFOA-SVM) for diagnosing the breast cancer. The high-level features abstracted from the volunteers are utilized to diagnose the breast cancer for the first time. Results In order to verify the effectiveness of the proposed method, 10-fold cross-validation method is used to make comparison among the proposed method, FOA-SVM (model based on original FOA), PSO-SVM (model based on original particle swarm optimization), GA-SVM (model based on genetic algorithm), random forest, back propagation neural network and SVM. The main novelty of LFOA-SVM lies in the combination of FOA with LF strategy that enhances the quality for FOA, thus improving the convergence rate of the FOA optimization process as well as the probability of escaping from local optimal solution. Conclusions The experimental results demonstrate that the proposed LFOA-SVM method can beat other counterparts in terms of various performance metrics. It can very well distinguish malignant breast cancer from benign ones and assist the doctor with clinical diagnosis.
Nuclei detection is a key step in computer assisted pathology. Due to the variability of the size, shape, appearance, and texture of breast cancer nuclei in histopathological images, automated nuclei detection has always been a difficult aspect of computer-aided pathology research. In this article, Mask RCNN is presented for the automatic detection of nuclei on high-resolution histopathological images of breast cancer. Mask RCNN uses the ResNet network and effectively combines modules such as feature pyramid networks (FPN), ROIAlign, and fully convolutional networks (FCN). FPN can efficiently extract features of various dimensions in images. ROIAlign can improve the accuracy of the detection model in the detection task. FCN renders the prediction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.