Combretastatin A-4 (CA4) is the lead compound of a relatively new class of vascular disrupting agents that target existing tumor blood vessels. Recent studies showed the CA4 might inhibit angiogenesis. However, the underlying molecular mechanisms by which CA4 exerts its anti-angiogenic effects are not fully understood. In this study, we revealed that CA4 inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and capillary-like tube formation of human umbilical vascular endothelial cells (HUVECs). In in vivo assay, CA4 suppressed neovascularization in chicken chorioallantoic membrane (CAM) model and decreased the microvessel density in tumor tissues of a breast cancer MCF-7 xenograft mouse model. In addition, CA4 decreased the expression level and secretion of VEGF both in MCF-7 cells and HUVECs under hypoxia, as well as the activation of VEGFR-2 and its downstream signaling mediators following VEGF stimulation in HUVECs. Moreover, VEGF and VEGFR-2 expression in tumor tissues of the mouse xenograft model were down-regulated following CA4 treatment. Taken together, results from the current work provide clear evidence that CA4 functions in endothelial cell system to inhibit angiogenesis, at least in part, by attenuating VEGF/VEGFR-2 signaling pathway.
Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.
Primary photochemical paths of alkyl phenyl selenides (1) were investigated, and an origin of large deviations in the chemical yields of products obtained by carbon radical reactions induced by photolysis of phenyl selenides was clarified. KrF excimer laser photolyses of n-pentyl phenyl selenide (1a) yielded 1-pentene (2a), n-pentane (3a), n-decane (4a), dipentyl selenide (5a), benzene (6), dipentyl diselenide (7a), and diphenyl diselenide (7) as major photoproducts, with compounds 2a, 3a, 4a, 5a, and 7 formed by pentyl-Se bond cleavage, and 5a, 6, and 7a by Ph-Se bond cleavage. The selectivity of the photoproducts revealed the occurrence of an unexpected amount of Ph-Se bond cleavage (35% in n-hexane at 248 nm) during photolysis. Solvent viscosity, wavelength of light, and the structure of alkyl substituents were the major factors that controlled Ph-Se bond cleavage. The ratio of Ph-Se bond cleavage decreased with increasing solvent viscosity and laser wavelength. The effect of alkyl substituents on the ratio of bond cleavages, Ph-Se/total C-Se, was investigated for five alkyl phenyl selenides; the ratio decreased in the order pentyl > 2-methylallyl > allyl > 1-ethylpropyl > tert-butyl groups. The contribution of Ph-Se bond cleavage is most probably the origin of the large deviations in the yields of radical reactions induced by photolyses of 1, which can be minimized by selecting appropriate solvents and wavelength of light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.