Six female rhesus macaques were immunized orally and intranasally at 0 weeks and intratracheally at 12 weeks with an adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus SIV sm env recombinant and at 24 and 36 weeks with native SIV mac251 gp120 in Syntex adjuvant. Four macaques received the Ad5hr vector and adjuvant alone; two additional controls were naive. In vivo replication of the Ad5hr wild-type and recombinant vectors occurred with detection of Ad5 DNA in stool samples and/or nasal secretions in all macaques and increases in Ad5 neutralizing antibody in 9 of 10 macaques following Ad administrations. SIV-specific neutralizing antibodies appeared after the second recombinant immunization and rose to titers >10,000 following the second subunit boost. Immunoglobulin G (IgG) and IgA antibodies able to bind gp120 developed in nasal and rectal secretions, and SIV-specific IgGs were also observed in vaginal secretions and saliva. T-cell proliferative responses to SIV gp140 and T-helper epitopes were sporadically detected in all immunized macaques. Following vaginal challenge with SIV mac251 , transient or persistent infection resulted in both immunized and control monkeys. The mean viral burden in persistently infected immunized macaques was significantly decreased in the primary infection period compared to that of control macaques. These results establish in vivo use of the Ad5hr vector, which overcomes the host range restriction of human Ads for rhesus macaques, thereby providing a new model for evaluation of Ad-based vaccines. In addition, they show that a vaccine regimen using the Ad5hr-SIV env recombinant and gp120 subunit induces strong humoral, cellular, and mucosal immunity in rhesus macaques. The reduced viral burden achieved solely with an env-based vaccine supports further development of Ad-based vaccines comprising additional viral components for immune therapy and AIDS vaccine development.
Envelope protein immunogens may improve DNA or live-vectored HIV vaccines by complementing antiviral cellular responses with Env antibodies. We tested this concept by administering two immunizations of alum-adjuvanted HIV-1 89.6 gp120 to macaques being primed at weeks 0 and 8 with SHIV 89.6 Gag-Pol-Env DNA and boosted at week 24 with SHIV-89.6 Gag-Pol-Env recombinant modified vaccinia Ankara (MVA). Three hundred micrograms of gp120 was delivered with the second DNA prime and the MVA booster. Eight months after vaccination, all animals were challenged intrarectally with the related, yet serologically distinct, SHIV-89.6P. The gp120 immunizations raised binding, but not neutralizing antibody for the challenge virus, and allowed testing of whether gp120 vaccines that fail to raise neutralizing antibody can improve protection. Following the second gp120 immunization, the plus-gp120 group showed >10 times higher levels of binding antibody than the minus-gp120 group. These levels fell and were overall similar in both groups at the time of challenge. Following the second challenge, both groups had similar temporal patterns and heights of binding and neutralizing antibodies. However, the plus-gp120 group had less consistent control of viremia and higher levels of plasma viral RNA for the first year postchallenge. Assays for complement-dependent enhancing antibody revealed a trend toward higher levels of activity in the plus-gp120 group. This trend did not reach significance in our animal groups of 8. We conclude that gp120 inoculations that fail to raise neutralizing antibody do not improve the efficacy of Gag-Pol-Env DNA/MVA vaccines.
We developed an AIDS vaccine for Western and West-Central Africa founded on HIV-1 subtype CRF02_AG. Rhesus macaques were primed with Gag-Pol-Env-expressing plasmid DNA and boosted with a recombinant modified vaccinia virus Ankara (rMVA), expressing matched proteins. Two DNA vaccine constructs (IC1-90 and IC48) that differed by point mutations in gag and pol were compared. IC1-90 produces primarily immature (core comprises unprocessed Pr55Gag) HIV-like particles (VLPs) and IC48 produces mature VLP with processed Pr55Gag, immature VLP, and intracellular protein aggregates. Both vaccines raised significant cellular responses for Gag, Pol, and Env. Approximate twofold higher ELISPOT responses to Gag and Env epitopes were observed for IC48 animals than for IC1-90 animals at the peak post-MVA effector (P = 0.028) and late memory (P = 0.051) phases, respectively. Greater breadth for IC48-primed animals was observed than for IC1-90-primed animals at peak response (P = 0.03). Our results indicated that the vaccines elicited high frequency T cell responses and primed anti-Env antibody. They also suggest that expression of different forms of VLP has a significant effect on elicited cellular and humoral immunity.
The ability of human immunodeficiency virus type 1 (HIV-1) to replicate in the presence of strong immune responses to the virus may be due to its high mutation rate, which provides envelope gene variability for selection of neutralization-resistant variants. Understanding neutralization escape mechanisms is therefore important for the design of HIV-1 vaccines and our understanding of the disease process. In this report, we analyze mutations at amino acid positions 281 and 582 in the HIV-1 envelope, where substitutions confer resistance to broadly reactive neutralizing antisera from seropositive individuals. Neither of these mutations lies within an antibody-binding site, and therefore the mechanism of immune escape in both cases is by alteration of the shape of the envelope proteins. The conformation of the CD4-binding site is shown to be critical with regard to presentation of other discontinuous epitopes. From our analysis of the neutralization of these variants, we conclude that escape from polyclonal sera occurs through alterations at several different epitopes, generally resulting from single amino acid substitutions which influence envelope conformation. Experiments on a double mutant showed that the combination of both mutations is not additive, suggesting that these variants utilized alternate pathways to elicit similar alterations of the HIV-1 envelope structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.