This study aimed at the characterization of carbapenem-resistant Klebsiella pneumoniae isolates focusing on typing of the blaOXA-48-like genes. Additionally, the correlation between the resistance pattern and biofilm formation capacity of the carbapenem-resistant K. pneumoniae isolates was studied. The collected isolates were assessed for their antimicrobial resistance and carbapenemases production by a modified Hodge test and inhibitor-based tests. The carbapenemases encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48-like) were detected by PCR. Isolates harboring blaOXA-48-like genes were genotyped by Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) and plasmid profile analysis. The discriminatory power of the three typing methods (antibiogram, ERIC-PCR, and plasmid profile analysis) was compared by calculation of Simpson’s Diversity Index (SDI). The transferability of blaOXA-48 gene was tested by chemical transformation. The biofilm formation capacity and the prevalence of the genes encoding the fimbrial adhesins (fimH-1 and mrkD) were investigated. The isolates showed remarkable resistance to β-lactams and non-β-lactams antimicrobials. The coexistence of the investigated carbapenemases encoding genes was prevalent except for only 15 isolates. The plasmid profile analysis had the highest discriminatory power (SDI = 0.98) in comparison with ERIC-PCR (SDI = 0.89) and antibiogram (SDI = 0.78). The transferability of blaOXA-48 gene was unsuccessful. All isolates were biofilm formers with the absence of a significant correlation between the biofilm formation capacity and resistance profile. The genes fimH-1 and mrkD were prevalent among the isolates. The prevalence of carbapenemases encoding genes, especially blaOXA-48-like genes in Egyptian healthcare settings, is worrisome and necessitates further strict dissemination control measures.
Strict regulations govern the production of pharmaceutical products whether they are sterile or nonsterile. Certain official tests are carried out in microbiology testing laboratory in any pharmaceutical production facility to ensure the pharmaceuticals microbiological quality according to the standard pharmacopeial recommendations. Nonsterile products must be free of specified microorganisms that are used as a check for their quality. Topical preparations must be free of Pseudomonas aeruginosa and Staphylococcus aureus, and oral preparations must be free of Salmonella spp and Escherichia coli. Conventional microbiological methods are time-consuming, labor-intensive, and require long incubation times, resulting in delaying the release of the products. In this study, we tested and validated a polymerase chain reaction identification approach to detect indicator bacteria in pharmaceutical preparations. The method depends on amplification of certain conserved genes located in the four specified bacteria. The method is optimized to be carried out individually or collectively to detect all indicator bacteria in a single reaction in different forms of pharmaceutical products.
In recent years several publications have encouraged the application of molecular techniques in the microbiological assessment of pharmaceuticals. One of these techniques is polymerase chain reaction (PCR). The successful application of PCR in the pharmaceutical industry in developing countries is governed by considerable factors and requirements. These factors include the setting up of a PCR laboratory and the choice of appropriate equipment and reagents. In addition, the presence of well-trained analysts and establishment of quality control and quality assurance programs are important requirements. The pharmaceutical firms should take into account these factors to allow better chances for regulatory acceptance and wide application of this technique.
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β‐lactam antibiotics used as last‐resort agents for treating antibiotic‐resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem‐hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non‐African countries, supporting the importance of MGEs in driving the intra‐ and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole‐genome sequencing remained relatively few. Characterization of MGEs in antibiotic‐resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.