Tissue engineering has emerged as a novel treatment for replacement of lost bone tissue. This study evaluated the effects of a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMMSCs) in the healing process of tooth sockets in rats. BMMSCs isolated from transgenic rats expressing enhanced green fluorescent protein (eGFP) were expanded and seeded on a chitosan-gelatin scaffold. These constructs were cultured for three days and characterized by scanning electronic microscopy (SEM) and energy dispersion spectroscopy (EDS). Receptor rats received the implant in the left sockets, after upper first-molar extraction. Right alveoli served as control. Animals were sacrificed at days 5, 21, and 35 post-graft for examination. Morphometry demonstrated increased bone mineralization after 21 and 35 days in transplanted sockets. Migration, differentiation, and fate of eGFP-labeled BMMSCs were monitored by immunohistochemistry. Tartrate-resistant acid phosphatase staining (TRAP) was carried out at 21 days, to identify the involvement of osteoclastic cells in the scaffold resorption. The biomaterial was resorbed by TRAP-negative giant cells in a typical foreign body reaction. Immunohistochemical findings showed that BMMSCs contributed to bone, epithelial, and vascular repair. Together, results indicate that BMMSCs loaded in the chitosan-gelatin scaffold is a strategy for tissue development in bone engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.