ABSTRACT:The impacts of El Niño (EN) on the rainfall over South America are investigated considering three EN types differing in the locations of the maximum sea surface temperature (SST) anomalies in the equatorial Pacific: the Central-Pacific (CP), Eastern-Pacific (EP) and the Mixed (MIX) types. The largest positive (SST) anomalies for the EP and CP types occur, respectively, in the eastern and central sectors of the tropical Pacific during all seasons. The SST anomaly pattern for the MIX-EN resembles that of the EP-EN during its onset stage, and of the CP-EN during its mature and demise stages. The different SST anomaly patterns affect the large-scale (Walker circulation and the tropospheric Rossby-wave trains) and local (South American low-level jet -SALLJ) atmospheric circulation patterns in different ways and lead to distinct precipitation anomaly patterns over South America. Variations in the position and longitudinal extension of the downward motions of the EN-related eastward-displaced Walker circulation explain the differences in the dryness over equatorial South America. For the CP-EN, a double Walker cell defines a more zonal configuration of the equatorial dryness over South America during the first three analysed seasons. This feature is not noted for the other two EN types. The Rossby-wave train pattern path depends on the EN types and seasons. In consequence, the associated local atmospheric circulation patterns depend also on the season and EN types. In all seasons, an intense SALLJ for the EP EN contrasts with weak or inexistence SALLJ for the other two EN types. Thus, a wetter condition over southeastern South America, southern and eastern Brazil occurs for the EP EN in relation to the other EN types. The results shown here, in particular considering the MIX EN type, have not been discussed before and might be useful mainly for climate monitoring purposes.
The paper tests if the two La Niña (LN) types can be distinguished from each other using their climate impacts on northeastern Brazil (NEB). To this end, all LN events during the 1901–2010 period followed by a wet or dry rainy season (from February to April) in NEB are classified into two categories: WET‐LN and DRY‐LN. The global and regional anomalous atmospheric circulation patterns and the rainfall anomaly patterns in South America associated with the two cases are analysed. The WET‐LN and DRY‐LN events present, respectively, the eastern Pacific LN and central Pacific LN sea surface temperature (SST) anomaly features in the tropical Pacific. On the other hand, the WET‐LN features an interhemispheric SST dipole pattern in the tropical Atlantic, and the DRY‐LN, colder‐than‐normal surface waters in the tropical South Atlantic (TSA) and equatorial Atlantic during MAM(+1). The two analysed cases show regional differential circulation patterns in all seasons. The anomalous wetness over northern and northwestern South America occurs for the WET‐LN type during JJA(0)–DJF(+1) and for the DRY‐LN type, during DJF(+1)–MAM(+1). The anomalous dryness over SESA is more evident for the WET‐LN during JJA(0) and MAM(+1), and for the DRY‐LN, during SON(0). Anomalous dryness occurs in central and eastern South America noted during JJA(0) and DJF(+1) for both cases analysed. The precipitation anomalies in northern South America during DJF(+1) are stronger and more extensive for the DRY‐LN than for the WET‐LN events due to the action of both the anomalous (double) Walker and Hadley cells for the DRY‐LN, in contrast with the exclusive action of an anomalous Walker cell for the WET‐LN case. Also, a double Walker cell drives the dry–wet dipole between northern South America and NEB during MAM(+1) for the DRY‐LN. Our results might be useful mainly for climate monitoring purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.