Inflammation and angiogenesis are key components of fibrovascular tissue growth, a biological event underlying both physiological (wound healing) and pathological conditions (tumor development, chronic inflammation). We investigated these components in three frequently used mouse strains (Swiss, Balb/c and C57BL/6J) to verify the influence of genetic background on the kinetics of inflammatory cell recruitment/activation, neovascularization, extracellular matrix deposition, and cytokine production in polyether-polyurethane sponge implanted subcutaneously in male mice of these strains. The kinetics of neutrophil recruitment/activation as assessed by myeloperoxidase (MPO) activity was 2- and 3-fold higher in Balb/c implants at day 1 compared with Swiss and C57BL/6J implants, respectively. Macrophage accumulation/activation as NAG (n-acetyl β-glucosaminidase) activity was higher in Swiss implants. The levels the monocyte chemoattractant protein 1 (CCL2(MCP-1)) peaked at day 10 in the three types of implants but was produced more by C57BL/6J mice. Angiogenesis (hemoglobin, vascular endothelial growth factor-VEGF, and number of vessels) differed among the strains. Swiss implants had the highest hemoglobin content but the lowest VEGF levels. In contrast, Balb/c implants had higher VEGF levels but lower hemoglobin. Collagen deposition and transforming growth factor β-1; TGFβ-1 levels also varied among the groups. Swiss and Balb/c implants had progressive increase in TGFβ-1 from 4 to 14 days, while C57BL/6J implants achieved the peak at day 10 and fell at day 14. These findings emphasize the major contribution of genetic background in the temporal pattern and intensity of inflammatory angiogenesis components that may have functional consequences in physiological and pathological conditions where these processes co-exist.
Injury of skeletal abdominal muscle wall is a common medical condition and implantation of synthetic or biological material is a procedure to repair musculofascial defects. We proposed to characterize the dynamics of inflammatory cell recruitment, newly formed blood vessels, cytokine production and fibrogenesis in the abdominal skeletal muscle in response to polyether-polyurethane sponge implants in mice. At 2, 4, 7 and 10days after implantation the muscle tissue underneath the sponge matrix was removed for the assessment of the angiogenic response (hemoglobin content, vascular endothelial growth factor and morphometric analysis of the number of vessels) and inflammation (myeloperoxidase and n-acethyl-B-d-glucosaminidase activities, cytokines). In addition, muscle fibrogenesis was determined by the levels of TGF-β1 and collagen deposition. Hemoglobin content, wash out rate of sodium fluorescein (indicative of blood flow) and the number of vessels increased in the abdominal muscle bearing the synthetic matrix in comparison with the intact muscle. Neutrophil recruitment peaked in the muscle at day 2, followed by macrophage accumulation at day 4 post-injury. The levels of the cytokines, VEGF, TNF-α, CCL-2/MCP-1 were higher in the injured muscle compared with the intact muscle and peaked soon after muscle injury (days 2 to 4). Collagen levels were higher in sponge-bearing muscle compared with the non-bearing tissue soon after injury (day 2). The implantation technique together with the inflammatory and vascular parameters used in this study revealed inflammatory, angiogenic and fibrogenic events and mechanisms associated with skeletal muscle responses to synthetic implanted materials.
Fibroproliferative processes are regulated by a wide variety of tissue components and genetic factors. However, whether there are genetic differences in peritoneal fibroproliferative tissue formation, with consequent differences in response to drug treatment, is unclear. We characterize the influence of the genetic background on peritoneal fibroproliferative tissue induced by sponge implants in DBA/1, Swiss, C57BL/6, and BALB/c mouse strains. In addition, responses to dipyridamole in the implants were evaluated. Angiogenesis, assessed by intra-implant hemoglobin content, was highest in Swiss mice, whereas levels of vascular endothelial growth factor were highest in C57BL/6 mice. The levels of pro-inflammatory cytokines and of inflammatory enzymes (myeloperoxidase- and N-acetyl-β-D-glucosaminidase) were also strain-related. The pro-fibrogenic markers transforming growth factor beta-1 and collagen were lowest in implants placed in DBA/1 mice, whereas those in C57BL/6 mice had the highest levels. Differential sensitivity to dipyridamole was also observed, with this compound being pro-angiogenic in implants placed in DBA/1 mice but antiangiogenic in implants placed in Swiss. An overall anti-inflammatory response was observed in the inbred strains. Antifibrogenic effects were observed only in implants placed in C57BL/6 mice. These important strain-related differences in the development of peritoneal fibrosis and in response to dipyridamole must be considered in the design and analysis of studies on fibrogenesis in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.