Aim To examine the population genetic structure in Posidonia australis meadows, a marine foundation species capable of long distance dispersal (LDD), and the role of historical versus contemporary processes in shaping post Last Glacial Maximum (LGM) re‐colonization. Location Southeastern Australia including the Bass Strait Islands. Methods We generated multilocus genotypes and assessed spatial patterns of genetic diversity. Relationships among meadows were assessed in terms of historical sea level changes, oceanic boundary currents and contemporary seed dispersal based on a hydrodynamic model. Results There was strong regional spatial genetic structuring among P. australis meadows in south‐eastern Australia, which was congruent with three recognized marine biogeographical provinces [Peronian (eastern), Flindersian (western and southern), and Maugean (south‐eastern)]. The genetic data suggest Maugean meadows persisted in isolation during the LGM, with evidence for admixture and contemporary gene flow. Simulated dispersal events identified high rates of local and regional demographic connectivity, with evidence for occasional LDD events. Main conclusions The strong regional differentiation is consistent with long‐term barriers to dispersal persisting in the marine environment through many sea level fluctuations. Bass Strait Island meadows all have strong signals of genetic admixture. A weak but significant isolation by distance relationship is consistent with a historical signal and contemporary seed dispersal mostly within the Bass Strait.
Seagrasses are in decline globally due to sustained pressure from coastal development, water quality declines and the ongoing threat from climate change. The result of this decline has been a change in coastal productivity, a reduction in critical fisheries habitat and increased erosion. Attempts to slow this decline have included legislative protection of habitat and direct restoration efforts. Monitoring the success of these approaches requires tracking changes in the abundance of seagrasses, but such monitoring is frequently conducted at either too coarse a spatial scale, or too infrequently to adequately detect changes within individual meadows. Here, we used high resolution aerial imagery to quantify the change in meadows dominated by Posidonia australis over five years at 14 sites in five estuaries in south-eastern Australia. Australia has some of the world's most diverse and extensive seagrass meadows, but the widely distributed P. australis has a slow growth rate, recovers poorly after disturbance, and suffers runaway attrition if the conditions for recovery are not met. In 2010, after declines of 12–57% between the 1940s and 1980s, P. australis was listed as a threatened ecological community in New South Wales. We quantified changes in area at fine spatial scales and, where loss was observed, describe the general patterns of temporal decline within each meadow. Our results demonstrate that seagrass meadows dominated by P. australis underwent declines of ~ 2–40% total area at 11 out of 14 study sites between 2009 and 2014. In the iconic Sydney Harbour, our analyses suggest that P. australis meadows are declining at an average rate greater than 10% yr-1, exceeding the global rate of seagrass decline. Highlighting these alarming declines across the study region should serve as means to prioritise management action and review the effectiveness of legislative listing as a method to limit impacts at an ecosystem level.
Seagrasses that are predominantly clonal often have low levels of genetic variation within populations and predicting their response to changing conditions requires an understanding of whether genetic variation confers increased resistance to environmental stressors. A higher level of genetic diversity is assumed to benefit threatened species due to the increased likelihood of those populations having genotypes that can persist under environmental change. To test this idea, we conducted an in situ shading experiment with six geographically distinct meadows of the threatened seagrass Posidonia australis that vary in genetic diversity. Different genotypes within meadows varied widely in their physiological and growth responses to reduced light during a simulated short-term turbidity event. The majority of meadows were resistant to the sudden reduction in light availability, but a small subset of meadows with low genotypic diversity were particularly vulnerable to the early effects of shading, showing substantially reduced growth rates after only 3 weeks. Using the photosynthetic performance (maximum quantum yield) of known genotypes, we simulated meadows of varying genetic diversity to show that higher diversity can increase meadow resilience to stress by ensuring a high probability of including a high-performing genotype. These results support the hypothesis that complementarity among genotypes enhances the adaptive capacity of a population, and have significant implications for the conservation of declining P. australis meadows close to the species range edge on the east coast of Australia, where the genotypic diversity is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.