BackgroundThe engagement of companion animal owners into the process of collecting epidemiological data can be facilitated through smartphone applications. In April 2018, the “tekenscanner“ (Dutch for tick scanner) app was launched with the aim of engaging pet owners and veterinarians to record ticks removed from their pets and submit these ticks for identification and pathogen testing. Tick-borne pathogens identified in ticks removed from dogs and cats during the first 6 months after the app was launched in the Netherlands are reported.MethodsThe tekenscanner app was used to record the geographical coordinates of ticks removed from dogs or cats onto a map of the Netherlands. A barcode was assigned to each tick for the easy tracking of each submission to our laboratory for taxonomic identification. Thereafter, DNA extracted from the ticks was PCR amplified, subjected to reverse line blot hybridization (RLB) and screened for a broad range of tick-borne pathogens. Results were added to the same app, usually within 2 weeks after the submission of each tick.ResultsThe app was downloaded 5591 times and resulted in the collection of 1273 georeferenced and barcoded ticks, with a peak submission in May and June of 2018. There were 1005 ticks collected from 406 dogs and 268 ticks collected from 111 cats. Ixodes ricinus was the predominant species (90.0%), with all stages found on dogs as well as on cats. Ixodes hexagonus (7.3%) female and nymphal ticks were also identified on both hosts, whereas adults of Dermacentor reticulatus (2.4%) and Rhipicephalus sanguineus (0.2%) were exclusively found on dogs. Nearly 15% of the ticks recovered from dogs carried one or more pathogens, whereas 13.8% of the ticks removed from cats were infected. Ixodes ricinus collected from dogs contained Borrelia spp. (1.9%), Babesia spp. (0.7%), Anaplasma phagocytophilum (1.3%), “Candidatus Neoehrlichia mikurensis” (2.9%) and Rickettsia helvetica (7.3%). Ixodes ricinus recovered from cats were infected with Borrelia spp. (1.9%), Babesia spp. (0.4%), A. phagocytophilum (1.9%), “Ca. Neoehrlichia mikurensis” (2.6%) and R. helvetica (6.7%). Ixodes hexagonus ticks (n = 93) were not infected. Dermacentor reticulatus ticks, found only in autumn, were infected with Rickettsia raoultii (16 %) and A. phagocytophilum. Three R. sanguineus, on dogs from France and the USA imported into the Netherlands, were all negative.ConclusionsThe tekenscanner app is a versatile tool to use for submission of ticks and facilitated the fast feedback of test results. Community engagement through the app is suitable for identifying hotspots for ticks and tick-borne pathogens and provided an early warning system for exotic ticks invading the Netherlands.
Episodes of inflammation and pain are predominant features of arthritic joint diseases. Drug delivery systems (DDS) could reduce inflammation and pain long-term without chances of infection upon multiple injections. To allow for long-term evaluation of DDS, we modified a previously published acute arthritis model by extending follow-up periods between flare-ups. Unilateral synovial inflammation of the knee was induced by intra-articular injection of streptococcal cell wall peptidoglycan polysaccharide (PGPS), and flare-ups were induced by intravenous PGPS injections every 4 weeks for a total duration of 84 days. In PGPS-reactivated animals, joint swelling, pain behavior, post mortem synovitis, and osteophyte formation were notable features. Hepatitis, splenitis and inflammation of non-primed joints were observed as systemic side effects. To test the applicability of the modified arthritis model for long-term testing of DDS, the duration of anti-inflammatory and analgesic effects of a corticosteroid released from two different polymer-based platforms was evaluated. The current modified arthritis model has good applicability for testing of DDS for a prolonged period of time. Furthermore, the novel autoregulatory polyesteramide (PEA) microsphere platform releasing triamcinolone acetonide (TAA) was benchmarked against poly lactic-co-glycolic acid (PLGA) and reduced joint swelling and pain behavior more potently compared to TAA-loaded PLGA microspheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.