Objective. To apply and analyze the mechanisms of action of dimethyldioctadecylammonium bromide (DDA), a powerful adjuvant that does not have the side effects of the conventionally used Freund's adjuvants, in proteoglycan-induced arthritis (PGIA) and collageninduced arthritis (CIA).Methods. PGIA and CIA were generated using standard immunization protocols with cartilage proteoglycan aggrecan (PG) or human type II collagen (CII) emulsified with Freund's complete adjuvant (CFA), and compared with PGIA and CIA generated using immunization protocols in which the same antigens were used in combination with the adjuvant DDA. Immune responses to immunizing and self PGs and CII, and the incidence, severity, and onset of arthritis were monitored throughout the experiments. In addition, a new, inexpensive, and powerful method of inducing arthritis using crude cartilage extracts is described.Results. A significantly reduced onset period and a more severe arthritis were achieved in BALB/c mice immunized with cartilage PGs in DDA. PGs from bovine, ovine, and porcine cartilage, which otherwise have no effect or have only a subarthritogenic effect, and crude extracts of human osteoarthritic cartilage induced a 100% incidence with a very high arthritis score in BALB/c mice. The overall immune responses to either CII or PG were similar in antigen/CFA-immunized and antigen/DDA-immunized animals, but the Th1/Th2 balance shifted significantly toward a Th1 bias in DDAinjected animals with either PGIA or CIA.Conclusion. DDA, which was first used in autoimmune models, is a potent nonirritant adjuvant, which eliminates all undesired side effects of the Freund's adjuvants. DDA exerts a strong stimulatory effect via the activation of nonspecific (innate) immunity and forces the immune regulation toward Th1 dominance. These lines of evidence also suggest the possibility that seemingly innocuous compounds may exert an adjuvant effect in humans and may create the pathophysiologic basis of autoimmunity in susceptible individuals via the activation/stimulation of innate immunity.Several lines of evidence indicate that the effector mechanism that initially attacks the small joints in rheumatoid arthritis (RA) is T cell driven. As a result, an aggressive synovial pannus develops that destroys articular cartilage and bone, leading to massive ankylosis and deformities of the peripheral joints. The disease has a progressive character, with involvement of more and more joints over time. While the primary target organ is the synovial joint, there is no clear evidence that any macromolecule of cartilaginous tissues, bone, or synovium would be a preferential autoantigen. Nevertheless, the most relevant animal models of RA appear to be those induced by cartilage matrix components, such as type II collagen (CII) or proteoglycan aggrecan (PG).Systemic immunization of genetically susceptible rodents with cartilage-specific CII (1,2) or of BALB/c or
Rheumatoid arthritis (RA) is the most common, crippling human autoimmune disease. Using Western blotting and tandem mass spectroscopy, we have identified the endoplasmic reticulum chaperone BiP, a 78-kDa glucose-regulated protein, as a possible autoantigen. It preferentially stimulated increased proliferation of synovial T cells from patients with RA but not from patients with other arthritides. Mice with established collagen- or pristane-induced arthritis developed IgG Abs to BiP. Although BiP injected in CFA failed to induce arthritis in several strains of rats and mice, including HLA-DR4+/−- and HLA-DR1+/+-transgenic animals, it completely inhibited the development of arthritis when given i.v. 1 wk before the injection of type II collagen arthritis. Preimmunization with BiP suppressed the development of adjuvant arthritis in Lewis rats in a similar manner. This is the first report of a mammalian chaperone that is an autoantigen in human RA and in experimental arthritis and that can also prevent the induction of experimental arthritis. These findings may stimulate the development of new immunotherapies for the treatment of RA.
BackgroundThe anti-inflammatory capacity of heat shock proteins (HSP) has been demonstrated in various animal models of inflammatory diseases and in patients. However, the mechanisms underlying this anti-inflammatory capacity are poorly understood. Therefore, the possible protective potential of HSP70 and its mechanisms were studied in proteoglycan (PG) induced arthritis (PGIA), a chronic and relapsing, T cell mediated murine model of arthritis.Methodology/Principal FindingsHSP70 immunization, 10 days prior to disease induction with PG, inhibited arthritis both clinically and histologically. In addition, it significantly reduced PG-specific IgG2a but not IgG1 antibody production. Furthermore, IFN-γ and IL-10 production upon in vitro restimulation with HSP70 was indicative of the induction of an HSP70-specific T cell response in HSP70 immunized mice. Remarkably, HSP70 treatment also modulated the PG-specific T cell response, as shown by the increased production of IL-10 and IFN-γ upon in vitro PG restimulation. Moreover, it increased IL-10 mRNA expression in CD4+CD25+ cells. HSP70 vaccination did not suppress arthritis in IL-10−/− mice, indicating the crucial role of IL-10 in the protective effect.Conclusions/SignificanceIn conclusion, a single mycobacterial HSP70 immunization can suppress inflammation and tissue damage in PGIA and results in an enhanced regulatory response as shown by the antigen-specific IL-10 production. Moreover, HSP70 induced protection is critically IL-10 dependent.
The significance of immune responses to certain heat shock proteins (HSPs) that develop in virtually all inflammatory diseases is only now becoming clear. In experimental models, HSPs prevent or arrest inflammatory damage, and initial clinical trials in chronic inflammatory disease have shown HSP peptides to promote production of anti-inflammatory cytokines-indicating immunoregulatory potential. HSPs are ubiquitous self-antigens that are highly expressed in inflamed tissues. The prokaryotic homologous proteins, present in every bacterial species, are dominantly immunogenic. This is striking, especially as these proteins have large areas of sequence homologies with the host (mammalian) counterparts. In several experimental models of autoimmune diseases, immunisation with bacterial HSPs inhibited disease development, as did oral/nasal administration. Based on the experimental evidence so far, it is tempting to speculate that: firstly, exposure to homologues of these self-antigens, as present in, for instance, the bacterial intestinal flora, has a decisive impact on the regulation of self-tolerance at the level of T cells; and secondly, such proteins or their derivative peptides may have a role in an antigen specific immunotherapy approach involving modulation of relevant T cells, without the immediate necessity of defining disease specific autoantigens. Recent findings in experimental asthma and atherosclerosis have indicated that the field of application of such immunotherapy can be broader than just autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.