In the intestine, finger-like villi provide abundant surface area for nutrient absorption. During murine villus development, epithelial Hedgehog (Hh) signals promote aggregation of subepithelial mesenchymal clusters that drive villus emergence. Clusters arise first dorsally and proximally and spread over the entire intestine within 24 h, but the mechanism driving this pattern in the murine intestine is unknown. In chick, the driver of cluster pattern is tensile force from developing smooth muscle, which generates deep longitudinal epithelial folds that locally concentrate the Hh signal, promoting localized expression of cluster genes. By contrast, we show that in mouse, muscle-induced epithelial folding does not occur and artificial deformation of the epithelium does not determine the pattern of clusters or villi. In intestinal explants, modulation of Bmp signaling alters the spatial distribution of clusters and changes the pattern of emerging villi. Increasing Bmp signaling abolishes cluster formation, whereas inhibiting Bmp signaling leads to merged clusters. These dynamic changes in cluster pattern are faithfully simulated by a mathematical model of a Turing field in which an inhibitor of Bmp signaling acts as the Turing activator. In vivo, genetic interruption of Bmp signal reception in either epithelium or mesenchyme reveals that Bmp signaling in Hh-responsive mesenchymal cells controls cluster pattern. Thus, unlike in chick, the murine villus patterning system is independent of muscle-induced epithelial deformation. Rather, a complex cocktail of Bmps and Bmp signal modulators secreted from mesenchymal clusters determines the pattern of villi in a manner that mimics the spread of a self-organizing Turing field.
The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
Compared to adults, children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have predominantly mild or asymptomatic infections, but the underlying immunological differences remain unclear. Here, we describe clinical features, virology, longitudinal cellular, and cytokine immune profile, SARS-CoV-2-specific serology and salivary antibody responses in a family of two parents with PCR-confirmed symptomatic SARS-CoV-2 infection and their three children, who tested repeatedly SARS-CoV-2 PCR negative. Cellular immune profiles and cytokine responses of all children are similar to their parents at all timepoints. All family members have salivary anti-SARS-CoV-2 antibodies detected, predominantly IgA, that coincide with symptom resolution in 3 of 4 symptomatic members. Plasma from both parents and one child have IgG antibody against the S1 protein and virus-neutralizing activity detected. Using a systems serology approach, we demonstrate higher levels of SARS-CoV-2-specific antibody features of these family members compared to healthy controls. These data indicate that children can mount an immune response to SARS-CoV-2 without virological confirmation of infection, raising the possibility that immunity in children can prevent the establishment of SARS-CoV-2 infection. Relying on routine virological and serological testing may not identify exposed children, with implications for epidemiological and clinical studies across the life-span.
54 55 SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, 56 causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and 57 mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive 58 coronavirus immunological responses, induced by circulating human coronaviruses, is critical to 59 understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses 60 of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were 61 analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and 62 IgA were detected in healthy individuals, we identified serological signatures associated with SARS-63 CoV-2 antigen-specific Fcγ receptor binding, which accurately distinguished COVID-19 patients 64 from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc 65 upon infection, enhancing Fcγ receptor engagement. Vastly different serological signatures were 66 observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 67 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including 68receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced 69 humoral immunity associated with higher IgM, as observed in children, may have the potential to 70 induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-
Efficient digestion and absorption of nutrients by the intestine requires a very large apical surface area, a feature that is enhanced by the presence of villi, fingerlike epithelial projections that extend into the lumen. Prior to villus formation, the epithelium is a thick pseudostratified layer. In mice, villus formation begins at embryonic day (E)14.5, when clusters of mesenchymal cells form just beneath the thick epithelium. At this time, analysis of the flat lumenal surface reveals a regular pattern of short apical membrane invaginations that form in regions of the epithelium that lie in between the mesenchymal clusters. Apical invaginations begin in the proximal intestine and spread distally, deepening with time. Interestingly, mitotically rounded cells are frequently associated with these invaginations. These mitotic cells are located at the tips of the invaginating membrane (internalized within the epithelium), rather than adjacent to the apical surface. Further investigation of epithelial changes during membrane invagination reveals that epithelial cells located between mesenchymal clusters experience a circumferential compression, as epithelial cells above each cluster shorten and widen. Using a computational model, we examined whether such forces are sufficient to cause apical invaginations. Simulations and in vivo data reveal that proper apical membrane invagination involves intraepithelial compressive forces, mitotic cell rounding in the compressed regions and apico-basal contraction of the dividing cell. Together, these data establish a new model that explains how signaling events intersect with tissue forces to pattern apical membrane invaginations that define the villus boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.