Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form during invasion. We have previously proposed, on the basis of incomplete mass spectrometric mapping data, that PfAMA-1 shedding results from cleavage at two alternative positions. We now show conclusively that the PfAMA-1 ectodomain is shed from the merozoite solely as a result of cleavage at a single site, just 29 residues away from the predicted transmembrane-spanning sequence. Remarkably, this cleavage is mediated by the same membrane-bound parasite serine protease as that responsible for shedding of the merozoite surface protein-1 (MSP-1) complex, an abundant, glycosylphosphatidylinositol-anchored multiprotein complex. Processing of MSP-1 is essential for invasion. Our results indicate the presence on the merozoite surface of a multifunctional serine sheddase with a broad substrate specificity. We further demonstrate that translocation and shedding of PfAMA-1 is an actinindependent process.
In the vertebrate host, the malaria parasite invades and replicates asexually within circulating erythrocytes. Parasite proteolytic enzymes play an essential but poorly understood role in erythrocyte invasion. We have identified a Plasmodium falciparum gene, denoted pfsub-1, encoding a member of the subtilisin-like serine protease family (subtilases). The pfsub-1 gene is expressed in asexual blood stages of P. falciparum, and the primary gene product (PfSUB-1) undergoes post-translational processing during secretory transport in a manner consistent with its being converted to a mature, enzymatically active form, as documented for other subtilases. In the invasive merozoite, the putative mature protease (p47) is concentrated in dense granules, which are secretory organelles located toward the apical end of the merozoite. At some point following merozoite release and completion of erythrocyte invasion, p47 is secreted from the parasite in a truncated, soluble form. The subcellular location and timing of secretion of p47 suggest that it is likely to play a role in erythrocyte invasion. PfSUB-1 is a new potential target for antimalarial drug development.Plasmodium falciparum, the causative agent of the most severe form of human malaria, is an obligate intracellular apicomplexan parasite. The life cycle of the organism includes a number of specialized invasive (zoite) stages. In the vertebrate host, replication of the parasite in circulating erythrocytes is initiated when the cells are invaded by merozoites. The parasite replicates asexually within the infected erythrocyte to produce a number of progeny merozoites. Upon rupture of the host cell, these are released to invade fresh erythrocytes and perpetuate the blood stage cycle. Erythrocyte invasion by the malaria merozoite has been the subject of intensive study, since intervention strategies that prevent invasion would effectively block both replication of the parasite and the associated clinical disease.Electron microscopic studies have shown that erythrocyte invasion by the malaria merozoite takes place in a number of discrete stages. Initial reversible attachment of the parasite to the red cell surface is rapidly followed by reorientation, the formation of an irreversible junction between the apical prominence of the merozoite and the host cell surface, and finally entry of the parasite into the cell by a mechanism resembling a form of induced endocytosis (1-4). The process is facilitated by the controlled release of the contents of three types of secretory organelles, called rhoptries, micronemes, and dense granules, situated at or toward the apical domain of the merozoite (2, 5, 6). There is extensive evidence indicating an essential role for parasite-derived proteases in invasion. Invasion by P. falciparum merozoites is blocked in the presence of the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) 1 (7), and invasion by merozoites of a number of Plasmodium species is prevented by chymostatin (8 -13). The inhibitory effect of chymostatin on inv...
Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP1 42 ) is further cleaved to a 33-kDa N-terminal polypeptide (MSP1 33 ) and an 19-kDa C-terminal fragment (MSP1 19 ) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP1 42 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P. falciparum . Several residues in MSP1 19 were implicated in the interaction with suramin using NMR measurements. A series of symmetrical suramin analogues that differ in the number of aromatic rings and substitution patterns of the terminal naphthylamine groups was examined in invasion and processing assays. Two classes of analogue with either two or four bridging rings were found to be active in both assays, whereas two other classes without bridging rings were inactive. We propose that suramin and related compounds inhibit erythrocyte invasion by binding to MSP1 and by preventing its cleavage by the secondary processing protease. The results indicate that enzymatic events during invasion are suitable targets for drug development and validate the novel concept of an inhibitor binding to a macromolecular substrate to prevent its proteolysis by a protease.
We have produced monoclonal antibodies against Plasmodium yoelii merozoite surface protein 1 (MSP-1) and have assessed their ability to suppress blood stage parasitemia by passive immunization. Six immunoglobulin G antibodies were characterized in detail: three (B6, D3, and F5) were effective in suppressing a lethal blood stage challenge infection, two (B10 and G3) were partially effective, and one (B4) was ineffective. MSP-1 is the precursor to a complex of polypeptides on the merozoite surface; all of the antibodies bound to this precursor and to an ∼42-kDa fragment (MSP-142) that is derived from the C terminus of MSP-1. MSP-142 is further cleaved to an N-terminal ∼33-kDa polypeptide (MSP-133) and a C-terminal ∼19-kDa polypeptide (MSP-119) comprised of two epidermal growth factor (EGF)-like modules. D3 reacted with MSP-142 but not with either of the constituents MSP-133 and MSP-119, B4 recognized an epitope within the N terminus of MSP-133, and B6, B10, F5, and G3 bound to MSP-119. B10 and G3 bound to epitopes that required both C-terminal EGF-like modules for their formation, whereas B6 and F5 bound to epitopes in the first EGF-like module. These results indicate that at least three distinct epitopes on P. yoelii MSP-1 are recognized by antibodies that suppress parasitemia in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.