Modelers often need to quantify the rates at which zooplankton consume a variety of species, size classes and trophic types. Implicit in the equations used to describe the multiple resource functional response (i.e. how nutritional intake varies with resource densities) are assumptions that are not often stated, let alone tested. This is problematic because models are sensitive to the details of these formulations. Here, we enable modelers to make more informed decisions by providing them with a new framework for considering zooplankton feeding on multiple resources. We define a new classification of multiple resource responses that is based on preference, selection and switching, and we develop a set of mathematical diagnostics that elucidate model assumptions. We use these tools to evaluate the assumptions and biological dynamics inherent in published multiple resource responses. These models are shown to simulate different resource preferences, implied single resource responses, changes in intake with changing resource densities, nutritional benefits of generalism, and nutritional costs of selection. Certain formulations are further shown to exhibit anomalous dynamics such as negative switching and sub-optimal feeding. Such varied responses can have vastly different ecological consequences for both zooplankton and their resources; inappropriate choices may incorrectly quantify biologicallymediated fluxes and predict spurious dynamics. We discuss how our classes and diagnostics can help constrain parameters, interpret behaviors, and identify limitations to a formulation's applicability for both regional (e.g. HighNitrate-Low-Chlorophyll regions comprising large areas of the Pacific) and large-scale applications (e.g. global biogeochemical or climate change models). Strategies for assessing uncertainty and for using the mathematics to guide future experimental investigations are also discussed. r
Dinoflagellates are key species in marine environments, but they remain poorly understood in part because of their large, complex genomes, unique molecular biology, and unresolved in-group relationships. We created a taxonomically representative dataset of dinoflagellate transcriptomes and used this to infer a strongly supported phylogeny to map major morphological and molecular transitions in dinoflagellate evolution. Our results show an earlybranching position of Noctiluca, monophyly of thecate (plate-bearing) dinoflagellates, and paraphyly of athecate ones. This represents unambiguous phylogenetic evidence for a single origin of the group's cellulosic theca, which we show coincided with a radiation of cellulases implicated in cell division. By integrating dinoflagellate molecular, fossil, and biogeochemical evidence, we propose a revised model for the evolution of thecal tabulations and suggest that the late acquisition of dinosterol in the group is inconsistent with dinoflagellates being the source of this biomarker in pre-Mesozoic strata. Three distantly related, fundamentally nonphotosynthetic dinoflagellates, Noctiluca, Oxyrrhis, and Dinophysis, contain cryptic plastidial metabolisms and lack alternative cytosolic pathways, suggesting that all free-living dinoflagellates are metabolically dependent on plastids. This finding led us to propose general mechanisms of dependency on plastid organelles in eukaryotes that have lost photosynthesis; it also suggests that the evolutionary origin of bioluminescence in nonphotosynthetic dinoflagellates may be linked to plastidic tetrapyrrole biosynthesis. Finally, we use our phylogenetic framework to show that dinoflagellate nuclei have recruited DNA-binding proteins in three distinct evolutionary waves, which included two independent acquisitions of bacterial histone-like proteins.dinoflagellates | phylogeny | theca | plastids | dinosterol D inoflagellates comprise approximately 2,400 named extant species, of which approximately half are photosynthetic (1). However, this represents a fraction of their estimated diversity: in surface marine waters, dinoflagellates are some of the most abundant and diverse eukaryotes known (2). Dinoflagellates' ecological significance befits their abundance: photosynthetic species are dominant marine primary producers, and phagotrophic species play an important role in the microbial loop through predation and nutrient recycling. Approximately 75-80% of the toxic eukaryotic phytoplankton species are dinoflagellates, and they cause shellfish poisoning and harmful algal blooms of global importance. Symbiotic genera like Symbiodinium participate in interactions with metazoans and are essential for the formation of reef ecosystems, and parasitic forms play a central role in the collapse of harmful algal blooms, including those caused by dinoflagellates themselves (3). Dinoflagellates synthesize important secondary metabolites including sterols, polyketides, toxins, and dimethylsulfide, and several of them have evolved bioluminescence. They ...
A series of laboratory experiments was performed to measure dissolved organic carbon (DOC) production during herbivorous grazing by heterotrophic protists (ciliate Strombidinopsis acuminatum, dinoflagellate Oxyrrhis marina) and copepods (Calanus pacificus). DOC production by phytoplankton was 31~0 measured. Experiments were performed in artificial seawater to provide a low DOC background against which changes in DOC concentration could be measured directly. We found that DOC production during grazing was high, i.e. 16-37% of algal C content was released as DOC during an ingestion event. Bacterial growth rates were stimulated by grazer activity, most likely due to increased availability of labile DOC; breakage of fecal pellets by copepods may also have yielded DOC. In contrast, DOC production by phytoplankton was low, ranging from 3 to 7% of algal C content per day. Generalizing from these rates, a simple budget shows that grazer DOC production should ba: 4-6 times greater than phytoplankton DOC production in any region of the ocean where grazing is the dominant phytoplankton loss process. Both phytoplankton and grazer species influenced the carbohydrate composition of the DOC produced. Dissolved carbohydrates averaged 30 and 22% of total DOC in phytoplankton-only and grazer-containing treatments, respectively, and most variability in carbohydrate content was due to variations in polysaccharide levels. We conclude that planktonic grazers are potentially a major source of DOC in the marine envronment.Organic carbon molecules dissolved in seawater constitute one of the largest and most enigmatic carbon reservoirs on earth. The composition of seawater dissolved organic carbon (DOC) is poorly understood, because the bulk has not been characterized at the molecular level. Some 7-15% of the total DOC (depending on depth) is composed of amino acids and carbohydrates, with a minor lipid component (Williams and Druffel 1988). Recent improvements in analytical technique have led researchers to suggest a larger contribution from carbohydrates (17-34% of total DOC, predominantly polysaccharides) than was previously thought Pakulski and Benner 1992).Phytoplankton are often considered to supply a high percentage of marine DOC by direct exudation. Experimental evidence for phytoplankton DOC release is equivocal, however, and has been the subject of intense debate. A few phytoplankton species (e.g. Phaeocystis pouchetti, Chaetoceros Acknowledgments
The oceans harbor a tremendous diversity of marine microbes. Different functional groups of bacteria, archaea, and protists arise from this diversity to dominate various habitats and drive globally important biogeochemical cycles. Explanations for the distribution of microbial taxa and their associated activity often focus on resource availability and abiotic conditions. However, the continual reshaping of communities by mortality, allelopathy, symbiosis, and other processes shows that community interactions exert strong selective pressure on marine microbes. Deeper exploration of microbial interactions is now possible via molecular prospecting and taxon-specific experimental approaches. A holistic outlook that encompasses the full array of selective pressures on individuals will help elucidate the maintenance of microbial diversity and the regulation of biogeochemical reactions by planktonic communities.
Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.