SUMMARYMouse hepatitis virus type 3 (MHV3), a coronavirus, is an excellent animal model for the study of immunological disorders related to acute and chronic hepatitis. In this study, we have verified if the fulminant hepatitis induced by MHV3 could be related to an impairment of innate immunity. Groups of three C57BL/6 mice were infected with the pathogenic L2-MHV3 or attenuated YAC-MHV3 viruses, and the natural killer (NK) cell populations from liver, spleen and bone marrow were analysed. The percentage of intrahepatic NK1·1 + T cell receptor (TCR) -cells did not increase while NK1·1 + TCR inter cells decreased in both L2-MHV3-and YAC-MHV3-infected mice. Concurrently, splenic and myeloid NK1·1 + cells decreased in L2-MHV3-infected mice. However, the cytotoxic activity of NK cells increased in liver and decreased in bone marrow from pathogenic L2-MHV3-infected mice while no modification was detected in YAC-MHV3-infected mice. Flow cytometric analysis revealed that both normal and larger splenic or myeloid NK cells decreased more in pathogenic L2-MHV3-infected mice than in attenuated YAC-MHV3-infected mice. In vitro viral infections of interleukin (IL)-15-stimulated lymphoid cells from liver and bone marrow revealed that L2-MHV3 induced higher decreases in cell viability of NK1·1 + cells than the YAC-MHV3 variant. The NK cell decreases were due to the viral permissivity leading to cytopathic effects characterized by cell rounding, syncytia formation and apoptosis. Larger NK + syncytia were observed in L2-MHV3-infected cells than in YAC-MHV3-infected cells. These results suggest that NK cell production is impaired by viral infection favouring fulminant hepatitis.
Mouse hepatitis virus (MHV) provides an excellent animal model for the study of the immunopathological mechanisms involved in hepatic viral diseases. We previously generated an attenuated viral variant, YAC-MHV3, which induces a subclinical disease and recovery within 15 days. In contrast, the L2-MHV3 strain induces the development of a fulminant hepatitis, leading to death within 3 days. In this paper, we document intrahepatic and splenic T cell subpopulations involved in the hepatitis process and viral elimination identified in attenuated or pathogenic MHV3-infected C57BL/6 mice. Percentages of intrahepatic CD4(+) cells decreased in attenuated YAC-MHV3-infected mice, while they increased in mice infected with pathogenic L2-MHV3, compared with uninfected animals. Moreover, in YAC-MHV3-infected mice, the percentages of intrahepatic CD8(+) cells slightly decreased at 24 h pi, then increased until 15 days pi. In contrast, the CD4/CD8 ratios of splenic lymphoid subpopulations increased in the first days of infection and returned to normal values at 15 days pi. Intrahepatic NK1.1(+)alphabeta - TCR(inter) cells decreased in both virally infected groups of mice, while CD4(+)alphabeta - TCR(inter) LFA-1(high) cells increased in L2-MHV3-infected mice, in contrast with what was seen in YAC-MHV3-infected mice. However, these cells became anergic following Con A or PHA stimulation. Ex vivo studies showed that only the intrahepatic CD8(+) cells that were increased in YAC-MHV3-infected mice could be stimulated by lectins. In addition, in vitro viral infections revealed that L2-MHV3 viral infection led to an increase of intrahepatic CD4(+)alphabeta - TCR(inter) cells in the absence of CD8(+) cells only. These results indicate that the attenuated phenotype of the YAC-MHV3 virus is related to two different mechanisms: the first involves no increase of intrahepatic CD4(+)alphabeta - TCR(inter) or NK-T cells, while the second favors the recruitment and activation of CD8(+) cells in liver. The results are discussed in relation to the integrity of intrahepatic immune tolerance mechanisms and immune-mediated viral elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.