on behalf of the 100,000 Genomes Project Purpose: Fresh-frozen (FF) tissue is the optimal source of DNA for whole-genome sequencing (WGS) of cancer patients. However, it is not always available, limiting the widespread application of WGS in clinical practice. We explored the viability of using formalin-fixed, paraffin-embedded (FFPE) tissues, available routinely for cancer patients, as a source of DNA for clinical WGS. Methods:We conducted a prospective study using DNAs from matched FF, FFPE, and peripheral blood germ-line specimens collected from 52 cancer patients (156 samples) following routine diagnostic protocols. We compared somatic variants detected in FFPE and matching FF samples. Results:We found the single-nucleotide variant agreement reached 71% across the genome and somatic copy-number alterations (CNAs) detection from FFPE samples was suboptimal (0.44 median correlation with FF) due to nonuniform coverage. CNA detection was improved significantly with lower reverse crosslinking temperature in FFPE DNA extraction (80°C or 65°C depending on the methods). Our final data showed somatic variant detection from FFPE for clinical decision making is possible. We detected 98% of clinically actionable variants (including 30/31 CNAs). Conclusion:We present the first prospective WGS study of cancer patients using FFPE specimens collected in a routine clinical environment proving WGS can be applied in the clinic.Genet Med advance online publication 1 February 2018
This study assesses the role of posttransplant HLA antibody monitoring in the surveillance of pancreas transplant recipients. Four hundred thirty‐three pancreas transplants were performed at the Oxford Transplant Centre 2006–2011 (317 simultaneous pancreas kidney [SPK] and 116 isolated pancreas [IP]). HLA antibody monitoring was performed at 0, 6 and 12 months and annually and during clinical events. There was no association between pancreas graft failure and recipient or donor characteristics. Posttransplant antibody status, available for 354 (81.8%) of recipients, demonstrated that 141 (39.8%) developed de novo HLA antibodies, of which 52 (36.9%) were de novo donor‐specific HLA antibodies (DSA) (34 SPK, 18 IP). The development of antibodies to donor HLA, but not to nondonor HLA, was significantly associated with poorer graft outcomes, with 1‐ and 3‐year graft survival inferior in SPK recipients (85.2% vs. 93.5%; 71.8% vs. 90.3%, respectively; log‐rank p = 0.002), and particularly in IP recipients (50.0% vs. 82.9%; 16.7 vs. 79.4%, respectively; log‐rank p = 0.001). In a multivariate analysis, development of de novo DSA emerged as a strong independent predictor of pancreas graft failure (hazard ratio 4.66, p < 0.001). This is the largest study to examine de novo HLA antibodies following pancreas transplantation and clearly defines a high‐risk group in need of specific intervention.
BackgroundSingle gene tests to predict whether cancers respond to specific targeted therapies are performed increasingly often. Advances in sequencing technology, collectively referred to as next generation sequencing (NGS), mean the entire cancer genome or parts of it can now be sequenced at speed with increased depth and sensitivity. However, translation of NGS into routine cancer care has been slow. Healthcare stakeholders are unclear about the clinical utility of NGS and are concerned it could be an expensive addition to cancer diagnostics, rather than an affordable alternative to single gene testing.Methods and findingsWe validated a 46-gene hotspot cancer panel assay allowing multiple gene testing from small diagnostic biopsies. From 1 January 2013 to 31 December 2013, solid tumour samples (including non-small-cell lung carcinoma [NSCLC], colorectal carcinoma, and melanoma) were sequenced in the context of the UK National Health Service from 351 consecutively submitted prospective cases for which treating clinicians thought the patient had potential to benefit from more extensive genetic analysis. Following histological assessment, tumour-rich regions of formalin-fixed paraffin-embedded (FFPE) sections underwent macrodissection, DNA extraction, NGS, and analysis using a pipeline centred on Torrent Suite software. With a median turnaround time of seven working days, an integrated clinical report was produced indicating the variants detected, including those with potential diagnostic, prognostic, therapeutic, or clinical trial entry implications. Accompanying phenotypic data were collected, and a detailed cost analysis of the panel compared with single gene testing was undertaken to assess affordability for routine patient care.Panel sequencing was successful for 97% (342/351) of tumour samples in the prospective cohort and showed 100% concordance with known mutations (detected using cobas assays). At least one mutation was identified in 87% (296/342) of tumours. A locally actionable mutation (i.e., available targeted treatment or clinical trial) was identified in 122/351 patients (35%). Forty patients received targeted treatment, in 22/40 (55%) cases solely due to use of the panel. Examination of published data on the potential efficacy of targeted therapies showed theoretically actionable mutations (i.e., mutations for which targeted treatment was potentially appropriate) in 66% (71/107) and 39% (41/105) of melanoma and NSCLC patients, respectively. At a cost of £339 (US$449) per patient, the panel was less expensive locally than performing more than two or three single gene tests.Study limitations include the use of FFPE samples, which do not always provide high-quality DNA, and the use of “real world” data: submission of cases for sequencing did not always follow clinical guidelines, meaning that when mutations were detected, patients were not always eligible for targeted treatments on clinical grounds.ConclusionsThis study demonstrates that more extensive tumour sequencing can identify mutations that cou...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.