Background: The Food and Drug Administration (FDA) in the United States and the European Medicines Agency (EMA) have recognized social media as a new data source to strengthen their activities regarding drug safety.Objective: Our objective in the ADR-PRISM project was to provide text mining and visualization tools to explore a corpus of posts extracted from social media. We evaluated this approach on a corpus of 21 million posts from five patient forums, and conducted a qualitative analysis of the data available on methylphenidate in this corpus.Methods: We applied text mining methods based on named entity recognition and relation extraction in the corpus, followed by signal detection using proportional reporting ratio (PRR). We also used topic modeling based on the Correlated Topic Model to obtain the list of the matics in the corpus and classify the messages based on their topics.Results: We automatically identified 3443 posts about methylphenidate published between 2007 and 2016, among which 61 adverse drug reactions (ADR) were automatically detected. Two pharmacovigilance experts evaluated manually the quality of automatic identification, and a f-measure of 0.57 was reached. Patient's reports were mainly neuro-psychiatric effects. Applying PRR, 67% of the ADRs were signals, including most of the neuro-psychiatric symptoms but also palpitations. Topic modeling showed that the most represented topics were related to Childhood and Treatment initiation, but also Side effects. Cases of misuse were also identified in this corpus, including recreational use and abuse.Conclusion: Named entity recognition combined with signal detection and topic modeling have demonstrated their complementarity in mining social media data. An in-depth analysis focused on methylphenidate showed that this approach was able to detect potential signals and to provide better understanding of patients' behaviors regarding drugs, including misuse.
BackgroundAdverse drug reactions (ADRs) are an important cause of morbidity and mortality. Classical Pharmacovigilance process is limited by underreporting which justifies the current interest in new knowledge sources such as social media. The Adverse Drug Reactions from Patient Reports in Social Media (ADR-PRISM) project aims to extract ADRs reported by patients in these media. We identified 5 major challenges to overcome to operationalize the analysis of patient posts: (1) variable quality of information on social media, (2) guarantee of data privacy, (3) response to pharmacovigilance expert expectations, (4) identification of relevant information within Web pages, and (5) robust and evolutive architecture.ObjectiveThis article aims to describe the current state of advancement of the ADR-PRISM project by focusing on the solutions we have chosen to address these 5 major challenges.MethodsIn this article, we propose methods and describe the advancement of this project on several aspects: (1) a quality driven approach for selecting relevant social media for the extraction of knowledge on potential ADRs, (2) an assessment of ethical issues and French regulation for the analysis of data on social media, (3) an analysis of pharmacovigilance expert requirements when reviewing patient posts on the Internet, (4) an extraction method based on natural language processing, pattern based matching, and selection of relevant medical concepts in reference terminologies, and (5) specifications of a component-based architecture for the monitoring system.ResultsConsidering the 5 major challenges, we (1) selected a set of 21 validated criteria for selecting social media to support the extraction of potential ADRs, (2) proposed solutions to guarantee data privacy of patients posting on Internet, (3) took into account pharmacovigilance expert requirements with use case diagrams and scenarios, (4) built domain-specific knowledge resources embeding a lexicon, morphological rules, context rules, semantic rules, syntactic rules, and post-analysis processing, and (5) proposed a component-based architecture that allows storage of big data and accessibility to third-party applications through Web services.ConclusionsWe demonstrated the feasibility of implementing a component-based architecture that allows collection of patient posts on the Internet, near real-time processing of those posts including annotation, and storage in big data structures. In the next steps, we will evaluate the posts identified by the system in social media to clarify the interest and relevance of such approach to improve conventional pharmacovigilance processes based on spontaneous reporting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.