In situ chemical imaging techniques are being developed to provide information on the spatial distribution of artists' pigments used in polychrome works of art such as paintings. The new methods include reflectance imaging spectroscopy and X-ray fluorescence mapping. Results from these new methods have extended the knowledge obtained from site-specific chemical analyses widely in use. While these mapping methods have aided in determining the distribution of pigments, there is a growing interest to develop methods capable of identifying and mapping organic paint binders as well. Near infrared (NIR) reflectance spectroscopy has been extensively used in the remote sensing field as well as in the chemical industry to detect organic compounds. NIR spectroscopy provides a rapid method to assay organics by utilizing vibrational overtones and combination bands of fundamental absorptions that occur in the mid-IR. Here we explore the utility of NIR reflectance imaging spectroscopy to map organic binders in situ by examining a series of panel paintings known to have been painted using distemper (animal skin glue) and tempera (egg yolk) binders as determined by amino acid analysis of samples taken from multiple sites on the panels. In this report we demonstrate the success in identifying and mapping these binders by NIR reflectance imaging spectroscopy in situ. Three of the four panel paintings from Cosimo Tura's The Annunciation with Saint Francis and Saint Louis of Toulouse (ca. 1475) are imaged using a highly sensitive, line-scanning hyperspectral imaging camera. The results show an animal skin glue binder was used for the blue skies and blue robe of the Virgin Mary, and egg yolk tempera was used for the red robes and brown landscape. The mapping results show evidence for the use of both egg yolk and animal skin glue in the faces of the figures. The strongest absorption associated with lipidic egg yolk features visually correlates with areas that appear to have white highlights. The results are in agreement with prior site-specific amino acid analysis, underscoring the synergy of both methods. The work here demonstrates that NIR reflectance imaging spectroscopy is a useful technique that can identify and map paint binding media based on differences in chemical composition.
In situ analysis: Near infrared imaging spectroscopy (1000–2500 nm) is used to map the use of a fat‐containing paint binder, likely egg yolk, in situ on a work of art for the first time. The identification of the use of egg tempera on a 15th century illuminated manuscript leaf (Praying Prophet by Lorenzo Monaco) sheds light on the relationship between painters and illuminators and can inform preservation decisions.
This paper presents x-ray powder diffraction data for over 200 synthetic organic pigments. These pigments, most manufactured in the last 130 years, are frequently found in modern works of art. Their identification is of interest in the field of art conservation for the purposes of dating works of art as well as making conservators and curators aware of issues with lightfastness and solubility. Most classes of these pigments, including b-naphthol, Naphthol AS, mono-and di-arylide yellows, quinacridones, copper phthalocyanines, benzimidazolones, and perylenes give good diffraction data. Some pigments, including certain triarylcarbonium and some other metal containing pigments, especially aluminum containing pigments, were found not to diffract. X-ray powder diffraction is of great use in distinguishing polymorphs of pigments such as quinacridones and copper phthalocyanines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.