The beneficial effects of mindful awareness and mindfulness meditation training on physical and psychological health are thought to be mediated in part through changes in underlying brain processes. Functional connectivity MRI (fcMRI) allows identification of functional networks in the brain. It has been used to examine state-dependent activity and is well-suited for studying states such as meditation. We applied fcMRI to determine if Mindfulness-Based Stress Reduction (MBSR) training is effective in altering intrinsic connectivity networks (ICNs). Healthy women were randomly assigned to participate in an 8 week Mindfulness-Based Stress Reduction (MBSR) training course or an 8 week waiting period. After 8 weeks, fMRI data (1.5 T) was acquired while subjects rested with eyes closed, with the instruction to pay attention to the sounds of the scanner environment. Group independent component analysis was performed to investigate training-related changes in functional connectivity. Significant MBSR-related differences in functional connectivity were found mainly in auditory/salience and medial visual networks. Relative to findings in the control group, MBSR subjects showed (1) increased functional connectivity within auditory and visual networks, (2) increased functional connectivity between auditory cortex and areas associated with attentional and self-referential processes, (3) greater anticorrelation between auditory and visual cortex, and (4) greater anticorrelation between visual cortex and areas associated with attentional and self-referential processes. These findings suggest that 8 weeks of mindfulness meditation training alters intrinsic functional connectivity in ways that may reflect a more consistent attentional focus, enhanced sensory processing, and reflective awareness of sensory experience.
Resting-state functional magnetic resonance imaging has been used to investigate intrinsic brain connectivity in healthy subjects and patients with chronic pain. Sex-related differences in the frequency power distribution within the human insula (INS), a brain region involved in the integration of interoceptive, affective, and cognitive influences, have been reported. Here we aimed to test sex and disease-related alterations in the intrinsic functional connectivity of the dorsal anterior INS. The anterior INS is engaged during goaldirected tasks and modulates the default mode and executive control networks. By comparing functional connectivity of the dorsal anterior INS in age-matched female and male healthy subjects and patients with irritable bowel syndrome (IBS), a common chronic abdominal pain condition, we show evidence for sex and disease-related alterations in the functional connectivity of this region: (1) male patients compared with female patients had increased positive connectivity of the dorsal anterior INS bilaterally with the medial prefrontal cortex (PFC) and dorsal posterior INS; (2) female patients compared with male patients had greater negative connectivity of the left dorsal anterior INS with the left precuneus; (3) disease-related differences in the connectivity between the bilateral dorsal anterior INS and the dorsal medial PFC were observed in female subjects; and (4) clinical characteristics were significantly correlated to the insular connectivity with the dorsal medial PFC in male IBS subjects and with the precuneus in female IBS subjects. These findings are consistent with the INS playing an important role in modulating the intrinsic functional connectivity of major networks in the resting brain and show that this role is influenced by sex and diagnosis.
Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI.
Participants' on-road performance was more accurately predicted by the model identified in this study than using only performance on the SDSA test battery. The five psychometric/off-road tests should be used as a screening battery, after which a follow-up road test should be conducted to finally decide the fitness to drive of individuals with relapsing-remitting MS. Future studies are needed to confirm and validate the findings in this study.
Background/Aims Greater responsiveness of emotional arousal circuits in relation to delivered visceral pain has been implicated as underlying central pain amplification in Irritable Bowel Syndrome (IBS), with females showing greater responses than males. Methods Functional MRI was used to measure neural responses to an emotion recognition paradigm, using faces expressing negative emotions (fear and anger). Sex and disease differences in the connectivity of affective and modulatory cortical circuits were studied in 47 IBS (27 premenopausal females) and 67 healthy controls (HCs; 38 premenopausal females). Results Male subjects (IBS+HCs) showed greater overall brain responses to stimuli than female subjects in prefrontal cortex, insula, and amygdala. Effective connectivity analyses identified major sex and disease related differences in the functioning of brain networks related to prefrontal regions, cingulate, insula, and amygdala. Males had stronger connectivity between anterior cingulate subregions, amygdala, and insula, whereas females had stronger connectivity to and from the prefrontal modulatory regions (medial/dorsolateral cortex). Conclusions Male IBS demonstrate greater engagement of cortical and affect related brain circuitry compared to male controls and females, when viewing faces depicting emotions previously shown to elicit greater behavioral and brain responses in male subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.