Astrocytes, oligodendrocytes, and oligodendrocyte/type 2 astrocyte progenitors (O2A cells) can all produce molecules that inhibit axon regeneration. We have shown previously that inhibition of axon growth by astrocytes involves proteoglycans. To identify inhibitory mechanisms, we created astrocyte cell lines that are permissive or nonpermissive and showed that nonpermissive cells produce inhibitory chondroitin sulfate proteoglycans (CS-PGs). We have now tested these cell lines for the production and inhibitory function of known large CS-PGs. The most inhibitory line, Neu7, produces three CS-PGs in much greater amounts than the other cell lines: NG2, versican, and the CS-56 antigen. The contribution of NG2 to inhibition by the cells was tested using a function-blocking antibody. This allowed increased growth of dorsal root ganglion (DRG) axons over Neu7 cells and matrix and greatly increased the proportion of cortical axons able to cross from permissive A7 cells onto inhibitory Neu7 cells; CS-56 antibody had a similar effect. Inhibitory fractions of conditioned medium contained NG2 coupled to CS glycosaminoglycan chains, whereas noninhibitory fractions contained NG2 without CS chains. Enzyme preparations that facilitated axon growth in Neu7 cultures were shown to either degrade the NG2 core protein or remove CS chains. Versican is present as patches on Neu7 monolayers, but DRG axons do not avoid these patches. Therefore, NG2 appears to be the major axon-inhibitory factor made by Neu7 astrocytes. In the CNS, NG2 is expressed by O2A cells, which react rapidly after injury to produce a dense NG2-rich network, and by some reactive astrocytes. Our results suggest that NG2 may be a major obstacle to axon regeneration.
Accumulating evidence, obtained largely in vitro, indicates that opioids regulate the genesis of neurons and glia and their precursors in the nervous system. Despite this evidence, few studies have assessed opioid receptor expression in identified cells within germinal zones or examined opioid effects on gliogenesis in vivo. To address this question, the role of opioids was explored in the subventricular zone (SVZ) and/or striatum of 2-5-day-old and/or adult ICR mice. The results showed that subpopulations of neurons, astrocytes, and oligodendrocytes in the SVZ and striatum differentially express mu-, delta-, and/or kappa-receptor immunoreactivity in a cell type-specific and developmentally regulated manner. In addition, DNA synthesis was assessed by examining 5-bromo-2'-deoxyuridine (BrdU) incorporation into glial and nonglial precursors. Morphine (a preferential mu-agonist) significantly decreased the number of BrdU-labeled GFAP(+) cells compared with controls or mice co-treated with naltrexone plus morphine. Alternatively, in S100beta(+) cells, morphine did not significantly decrease BrdU incorporation; however, significant differences were noted between mice treated with morphine and those treated with morphine plus naltrexone. Most cells were GFAP(-)/S100beta(-). When BrdU incorporation was assessed within the total population (glia and nonglia), morphine had no net effect, but naltrexone alone markedly increased BrdU incorporation. This finding suggests that DNA synthesis in GFAP(-)/S100beta(-) cells is tonically suppressed by endogenous opioids. Assuming that S100beta and GFAP, respectively, distinguish among younger and older astroglia, this implies that astroglial replication becomes increasingly sensitive to morphine during maturation, and suggests that opioids differentially regulate the development of distinct subpopulations of glia and glial precursors.
Accumulating evidence, obtained largely in vitro, indicates that opioids regulate the genesis of neurons and glia and their precursors in the nervous system. Despite this evidence, few studies have assessed opioid receptor expression in identified cells within germinal zones or examined opioid effects on gliogenesis in vivo. To address this question, the role of opioids was explored in the subventricular zone (SVZ) and/or striatum of 2-5-day-old and/or adult ICR mice. The results showed that subpopulations of neurons, astrocytes, and oligodendrocytes in the SVZ and striatum differentially express mu-, delta-, and/or kappa-receptor immunoreactivity in a cell type-specific and developmentally regulated manner. In addition, DNA synthesis was assessed by examining 5-bromo-2'-deoxyuridine (BrdU) incorporation into glial and nonglial precursors. Morphine (a preferential mu-agonist) significantly decreased the number of BrdU-labeled GFAP(+) cells compared with controls or mice co-treated with naltrexone plus morphine. Alternatively, in S100beta(+) cells, morphine did not significantly decrease BrdU incorporation; however, significant differences were noted between mice treated with morphine and those treated with morphine plus naltrexone. Most cells were GFAP(-)/S100beta(-). When BrdU incorporation was assessed within the total population (glia and nonglia), morphine had no net effect, but naltrexone alone markedly increased BrdU incorporation. This finding suggests that DNA synthesis in GFAP(-)/S100beta(-) cells is tonically suppressed by endogenous opioids. Assuming that S100beta and GFAP, respectively, distinguish among younger and older astroglia, this implies that astroglial replication becomes increasingly sensitive to morphine during maturation, and suggests that opioids differentially regulate the development of distinct subpopulations of glia and glial precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.