Growing evidence indicates that cell adhesion to extracellular matrix (ECM) plays an important role in cancer chemoresistance. Leukemic T cells express several adhesion receptors of the β1 integrin subfamily with which they interact with ECM. However, the role of β1 integrins in chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL) is still ill defined. In this study, we demonstrate that interactions of human T-ALL cell lines and primary blasts with three-dimensional matrices including Matrigel and collagen type I gel promote their resistance to doxorubicin via β1 integrin. The blockade of β1 integrin with a specific neutralizing antibody sensitized xenografted CEM leukemic cells to doxorubicin, diminished the leukemic burden in the bone marrow and resulted in the extension of animal survival. Mechanistically, Matrigel/β1 integrin interaction enhanced T-ALL chemoresistance by promoting doxorubicin efflux through the activation of the ABCC1 drug transporter. Finally, our findings showed that Matrigel/β1 interaction enhanced doxorubicin efflux and chemoresistance by activating the FAK-related proline-rich tyrosine kinase 2 (PYK2) as both PYK2 inhibitor and siRNA diminished the effect of Matrigel. Collectively, these results support the role of β1 integrin in T-ALL chemoresistance and suggest that the β1 integrin pathway can constitute a therapeutic target to avoid chemoresistance and relapsed-disease in human T-ALL.
In addition to its classical receptor, CD40, it is now well established that CD154 also binds αIIbβ3, α5β1, and αMβ2 integrins. Although these integrins are all members of the same family, they bind CD154 differently. The current investigation aims to analyze the interaction of CD154 with α5β1 and αMβ2 and investigate its role in bidirectional signals in various human cell lines. Results obtained herein indicate that the CD154 residues involved in the interaction with α5β1 are N151 and Q166, whereas those involved in αMβ2 binding are common to residues required for CD40, namely Y145 and R203. Soluble CD40/CD154 or αMβ2/CD154 complexes do not interfere with the binding of CD154 to α5β1-positive cells, but inhibit the binding of CD154 to CD40-or αMβ2-positive cells, respectively. Ligation of CD154 on CD154-positive cells with soluble CD40, αIIbβ3, α5β1, or αMβ2 stimulates intracellular signaling, including MAPK phosphorylation. Given that CD154 exists as a trimer, our data strongly suggest that CD154 may bind concomitantly to two receptors of the same or different family, and biologically activate cells expressing both receptors. The characterization of CD154/receptor interactions helps the identification of new therapeutic targets for the prevention and/or treatment of CD154-associated autoimmune and inflammatory diseases.Keywords: Activation r Binding r CD154 r CD40 r Integrins Introduction CD154, also known as CD40 ligand (CD40L) or gp39, is a member of the tumor necrosis factor (TNF) superfamily. It was initially thought to be only expressed on activated CD4 + T cells; however, a wider distribution of CD154 is now established, including a variety of hematopoietic and nonhematopoietic cells [1,2]. Soluble CD154 (sCD154, encompassing residues M113-261), is released from activated T cells and platelets by an MMP-dependent Correspondence: Dr. Walid Mourad e-mail: mw.mourad@umontreal.ca cleavage [3,4]. Like other members of the TNF superfamily, both membrane and sCD154 form a noncovalently linked homotrimer [5,6], a structural requirement for CD154 biological activity [3,7].CD40, a type I transmembrane protein belonging to the TNF receptor superfamily, is the classical receptor for CD154. CD40 was initially considered a pan-B-cell antigen, but was subsequently shown to be expressed on a variety of cell types, including B lymphocytes, monocytes/macrophages, DCs, platelets, epithelial * These authors contributed equally to this work.C 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2015. 45: 592-602 Leukocyte signaling 593 cells, as well as endothelial cells [2,[8][9][10][11]. CD154/CD40 interactions were shown to be implicated in many biological responses, from inducing proliferation, differentiation, and Ig switching in resting B cells [12] to enhancing surface expression of costimulatory and adhesion molecules and stimulating cytokine production in immune and nonimmune cells [13,14]. It was considered that the CD154-mediated biological function involves only an interaction wi...
CD154, a critical regulator of the immune response, is usually associated with chronic inflammatory, autoimmune diseases as well as malignant disorders. In addition to its classical receptor CD40, CD154 is capable of binding other receptors, members of the integrin family, the αIIbβ3, αMβ2 and α5β1. Given the role attributed to integrins and particularly the β1 integrins in inhibiting apoptotic events in normal as well as malignant T cells, we were highly interested in investigating the role of the CD154/α5β1 interaction in promoting survival of malignant T cells contributing as such to tumor development and/or propagation. To support our hypothesis, we first show that soluble CD154 binds to the T-cell acute lymphoblastic leukemia cell line, Jurkat E6.1 in a α5β1-dependent manner. Binding of soluble CD154 to α5β1 integrin of Jurkat cells leads to the activation of key survival proteins, including the p38 and ERK1/2 mitogen-activated protein kinases (MAPKs), phosphoinositide 3 kinase (PI-3K), and Akt. Interestingly, soluble CD154 significantly inhibits Fas-mediated apoptosis in T cell leukemia-lymphoma cell lines, Jurkat E6.1 and HUT78 cells, an important hallmark of T cell survival during malignancy progression. These anti-apoptotic effects were mainly mediated by the activation of the PI-3K/Akt pathway but also involved the p38 and the ERK1/2 MAPKs cascades. Our data also demonstrated that the CD154-triggered inhibition of the Fas-mediated cell death response was dependent on a suppression of caspase-8 cleavage, but independent of de novo protein synthesis or alterations in Fas expression on cell surface. Together, our results highlight the impact of the CD154/α5β1 interaction in T cell function/survival and identify novel targets for the treatment of malignant disorders, particularly of T cell origin.
In addition to the membrane-bound form, CD154 also exists as a soluble molecule originating from an intracellular and membrane cleavage. We have previously shown that CD154 cleavage from T cell surface is mediated by CD40 and involves the action of ADAM10/ADAM17 enzymes. In the aim of defining the importance of CD154 maintained on cell surface, we generated a CD154 mutated at the cleavage site. Our data show that the double mutation of E112 and M113 residues of CD154 abolishes its spontaneous release and the CD40-mediated cleavage from cell surface but does not affect its binding to CD40. We also demonstrated that both the release of CD154 from the intracellular milieu and its CD40-mediated cleavage from cell surface are highly dependent on ADAM10/ADAM17 enzymes. The CD154-EM mutant was shown capable of inducing a more prominent apoptotic response in susceptible B cell lines than the wild-type (WT) form of the molecule. In addition, human B cells cultured in the presence of the CD154-EM mutant exhibited upregulated proliferative responses compared with the CD154-WT. The CD154-EM mutant was also shown to trigger differentiation of human B cells, reflected by an increased Ig production, more significantly than CD154-WT. Thus, our data strongly suggest that cleavage-resistant CD154 is a more prominent stimulant than the cleavable form of the molecule. Therefore, a maintained expression of CD154 on cell membrane and a disturbed cleavage of the molecule could be a mechanism by which CD154 is involved in some pathological conditions and should be revisited.
CD154 plays a major role in the pathogenesis of several autoimmune and inflammatory diseases. In addition to CD40, soluble CD154 (sCD154) binds to other receptors namely αIIbβ3, αMβ2, α5β1 and αvβ3 integrins. We have previously reported that binding of sCD154 to α5β1 integrin expressed on several human T cell lines is capable of inhibiting Fas-induced cell death. In the current study, we show that such effect of the sCD154/α5β1 interaction is not restricted to the cell death response induced by Fas but could also be exhibited toward other death signals such as TRAIL and TNFα. We also demonstrate that sCD154 is capable of inhibiting Fas-mediated death of human activated T cells, more importantly of CD4 + than CD8 + T ones. Our data also show that membrane-bound CD154 and α5β1 integrin expressed on the surface of distinct cells failed to influence cell death responses. However, when membrane-bound CD154 and α5β1 are expressed on the surface of same cell, their interaction was capable of down regulating cell death. CD154 was shown to co-localize with the α5β1 integrin on the surface of these cells. These data strongly suggest a cis-type of interaction between CD154 and α5β1 when both are expressed on the same cell surface, rather than a trans-interaction which usually implicates the ligand and its receptor each expressed on the surface of a distinct cell. Taken together, these findings add to the list of roles through which CD154 is contributing to the pathogenesis of autoimmuneinflammatory diseases, i.e. by protecting T cells from death and enhancing their survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.