Because RNA polymerase is a powerful motor, transmission of transcription-generated forces might directly alter DNA structure, chromatin or gene activity in mammalian cells. Here we show that transcription-generated supercoils streaming dynamically from active promoters have considerable consequences for DNA structure and function in cells. Using a tamoxifen-activatable Cre recombinase to excise a test segment of chromatin positioned between divergently transcribed metallothionein-IIa promoters, we found the degree of dynamic supercoiling to increase as transcription intensified, and it was very sensitive to the specific arrangement of promoters and cis elements. Using psoralen as an in vivo probe confirmed that, during transcription, sufficient supercoiling is produced to enable transitions to conformations other than B-DNA in elements such as the human MYC far upstream element (FUSE), which in turn recruit structure-sensitive regulatory proteins, such as FUSE Binding Protein (FBP) and FBP-Interacting Repressor (FIR). These results indicate that mechanical stresses, constrained by architectural features of DNA and chromatin, may broadly contribute to gene regulation.
The torsional stress caused by counter-rotation of the transcription machinery and template generates supercoils in a closed topological domain, but has been presumed to be too short-lived to be significant in an open domain. This report shows that transcribing RNA polymerases dynamically sustain sufficient torsion to perturb DNA structure even on linear templates. Assays to capture and measure transcriptionally generated torque and to trap short-lived perturbations in DNA structure and conformation showed that the transient forces upstream of active promoters are large enough to drive the supercoil-sensitive far upstream element (FUSE) of the human c-myc into single-stranded DNA. An alternative non-B conformation of FUSE found in stably supercoiled DNA is not accessible dynamically. These results demonstrate that dynamic disturbance of DNA structure provides a real-time measure of ongoing genetic activity.
During development and differentiation, cellular phenotypes are stably propagated through numerous cell divisions. This epigenetic 'cell memory' helps to maintain stable patterns of gene expression. DNA methylation and the propagation of specific chromatin structures may both contribute to cell memory. There are two impediments during the cell cycle that can hinder the inheritance of specific chromatin configurations: first, the pertinent structures must endure the passage of DNA-replication forks in S phase; second, the chromatin state must survive mitosis, when chromatin condenses, transcription is turned off, and almost all double-stranded DNA-binding proteins are displaced. After mitosis, the previous pattern of expressed and silent genes must be restored. This restoration might be governed by mass action, determined by the binding affinities and concentrations of individual components. Alternatively, a subset of factors might remain bound to mitotic chromosomes, providing a molecular bookmark to direct proper chromatin reassembly. Here we analyse DNA at transcription start sites during mitosis in vivo and find that it is conformationally distorted in genes scheduled for reactivation but is undistorted in repressed genes. These protein-dependent conformational perturbations could help to re-establish transcription after mitosis by 'marking' genes for re-expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.