We have carried out a receiver operating characteristics (ROC) study for the enhancement of mammographic features in digitized mammograms. The study evaluated the benefits of multi-scale enhancement methods in terms of diagnostic performance of radiologists. The enhancement protocol relied on multi-scale expansions and non-linear enhancement functions. Dyadic spline wavelet functions (first derivative of a cubic spline) were used together with a sigmoidal non-linear enhancement function1' 2 We designed a computer interface on a softcopy display and performed an ROC study with three radiologists, who specialized in mammography. Clinical cases were obtained from a national mammography database of digitized radiographs prepared by the University of South Florida (USF) and Harvard Medical School. Our study focused on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology (ACR) breast density rating, which are the most difficult cases in screening, were selected. To compare the performance of radiologists with and without using multi-scale enhancement, two groups of 30 cases each were diagnosed. Each group contained 15 cases of cancerous and 15 cases of normal mammograms. Conventional ROC analysis was applied, and the resulting ROC curves indicated improved diagnostic performance when radiologists used multi-scale non-linear enhancement.
We have carried out a receiver operating characteristics (ROC) study for the enhancement of mammographic features in digitized mammograms. The study evaluated the benefits of multi-scale enhancement methods in terms of diagnostic performance of radiologists. The enhancement protocol relied on multi-scale expansions and non-linear enhancement functions. Dyadic spline wavelet functions (first derivative of a cubic spline) were used together with a sigmoidal non-linear enhancement function1' 2 We designed a computer interface on a softcopy display and performed an ROC study with three radiologists, who specialized in mammography. Clinical cases were obtained from a national mammography database of digitized radiographs prepared by the University of South Florida (USF) and Harvard Medical School. Our study focused on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology (ACR) breast density rating, which are the most difficult cases in screening, were selected. To compare the performance of radiologists with and without using multi-scale enhancement, two groups of 30 cases each were diagnosed. Each group contained 15 cases of cancerous and 15 cases of normal mammograms. Conventional ROC analysis was applied, and the resulting ROC curves indicated improved diagnostic performance when radiologists used multi-scale non-linear enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.