BACKGROUND Research has underscored the effects of exposure and sensitization to allergens on the severity of asthma in inner-city children. It has also revealed the limitations of environmental remediation and guidelines-based therapy in achieving greater disease control. METHODS We enrolled inner-city children, adolescents, and young adults with persistent asthma in a randomized, double-blind, placebo-controlled, parallel-group trial at multiple centers to assess the effectiveness of omalizumab, as compared with placebo, when added to guidelines-based therapy. The trial was conducted for 60 weeks, and the primary outcome was symptoms of asthma. RESULTS Among 419 participants who underwent randomization (at which point 73% had moderate or severe disease), omalizumab as compared with placebo significantly reduced the number of days with asthma symptoms, from 1.96 to 1.48 days per 2-week interval, a 24.5% decrease (P<0.001). Similarly, omalizumab significantly reduced the proportion of participants who had one or more exacerbations from 48.8 to 30.3% (P<0.001). Improvements occurred with omalizumab despite reductions in the use of inhaled glucocorticoids and long-acting beta-agonists. CONCLUSIONS When added to a regimen of guidelines-based therapy for inner-city children, adolescents, and young adults, omalizumab further improved asthma control, nearly eliminated seasonal peaks in exacerbations, and reduced the need for other medications to control asthma. (Funded by the National Institute of Allergy and Infectious Diseases and Novartis; ClinicalTrials.gov number, NCT00377572.)
The rapid increase in Pseudomonas (Burkholderia) cepacia infection in cystic fibrosis (CF) patients suggests epidemic transmission, but the degree of transmissibility remains controversial as conflicting conclusions have been drawn from studies at different CF centres. This report provides the first DNA sequence-based documentation of a divergent evolutionary lineage of P. cepacia associated with CF centre epidemics in North America (Toronto) and Europe (Edinburgh). The involved epidemic clone encoded and expressed novel cable (Cbl) pili that bind to CF mucin. The sequence of the cblA pilin subunit gene carried by the epidemic isolates proved to be invariant. Although it remains to be determined how many distinct, highly transmissible lineages exist, our results provide both a DNA sequence and chromosomal fingerprint that can be used to screen for one such particularly infectious, transatlantic clone.
Background There is an association between adiposity and asthma prevalence, but the relationship to asthma control is unclear. Objectives To understand the relationships among adiposity, gender, and asthma control in inner-city adolescents with asthma. Methods We prospectively followed 368 adolescents with moderate to severe asthma (ages 12–20 years) living in 10 urban areas for one year. Asthma symptoms and exacerbations were recorded, and pulmonary function and exhaled nitric oxide were measured every 6 weeks. Adiposity measures (BMI, DEXA scans) were made, and blood was collected for allergy markers, adiponectin, leptin, TNF-α, IL-6 and CRP. Results More than 60% of females and 50% of males were above the 85th percentile of BMI-for-age. Higher BMI was associated with more symptom days (R= 0.18, P<0.01) and exacerbations (R=0.18, P=0.06) among females only. Adiponectin was inversely related to asthma symptoms (R=− 0.18, P<0.05) and exacerbations (R=− 0.20, P<0.05) and positively with FEV1/FVC (R=0.15, P<0.05) in males only, independent of body size. There was no relationship between adiposity or adipokines and total IgE, blood eosinophils and exhaled nitric oxide. DEXA provided little additional value in relating adiposity to asthma outcome in this population of adolescents. Conclusion Adiposity is associated with poorer asthma control in females. Adiponectin is associated with improved asthma control in males.
Background Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. Objective We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. Methods We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. Results Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < .6 × 10−11 for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. Conclusions Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.