Retrotransposons have shaped eukaryotic genomes for millions of years. To analyze the consequences of human L1 retrotransposition, we developed a genetic system to recover many new L1 insertions in somatic cells. Forty-two de novo integrants were recovered that faithfully mimic many aspects of L1s that accumulated since the primate radiation. Their structures experimentally demonstrate an association between L1 retrotransposition and various forms of genetic instability. Numerous L1 element inversions, extra nucleotide insertions, exon deletions, a chromosomal inversion, and flanking sequence comobilization (called 5' transduction) were identified. In a striking number of integrants, short identical sequences were shared between the donor and the target site's 3' end, suggesting a mechanistic model that helps explain the structure of L1 insertions.
LINE-1 (L1) elements are the most abundant autonomous retrotransposons in the human genome, accounting for about 17% of human DNA. The L1 retrotransposon encodes two proteins, open reading frame (ORF)1 and the ORF2 endonuclease/reverse transcriptase. L1 RNA and ORF2 protein are difficult to detect in mammalian cells, even in the context of overexpression systems. Here we show that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression. This decreased RNA concentration does not result from major effects on the transcription initiation rate or RNA stability. Rather, the poor L1 expression is primarily due to inadequate transcriptional elongation. Because L1 is an abundant and broadly distributed mobile element, the inhibition of transcriptional elongation by L1 might profoundly affect expression of endogenous human genes. We propose a model in which L1 affects gene expression genome-wide by acting as a 'molecular rheostat' of target genes. Bioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.
Downstream target genes of p53 are thought to mediate its tumor-suppressive activity, but it is unknown whether differential transactivation of these genes is regulated at the level of p53 binding to their promoters. To address this issue, p53 binding in vivo to consensus sites in the p21 Waf1 , MDM2, and PIG3 promoters was investigated in cells exposed to adriamycin (ADR) or ionizing radiation as well as in an inducible p53 cell line. p53-DNA complexes were cross-linked in vivo by treating the cells with formaldehyde and processed by chromatin immunoprecipitation-PCR. This methodology allowed for the analysis of relevant p53-DNA complexes by preventing redistribution of cellular components upon collection of cell extracts. Increased p53 binding to the p21 Waf1 , MDM2, and PIG3 promoters occurred within 2 h after p53 activation; however, significant increases in PIG3 transcription did not occur until 15 h after p53 binding. Gel shift analyses indicated that p53 had lower affinity for the consensus binding site in the PIG3 promoters compared to its consensus sites in the p21 and MDM2 genes, which suggests that additional factors may be required to stabilize the interaction of p53 with the PIG3 promoter. Further, acetylated p53 (Lys382) was found in chemically cross-linked complexes at all promoter sites examined after treatment of cells with ADR. In summary, the kinetics of p53 binding in vivo to target gene regulatory regions does not uniformly correlate with target gene mRNA expression for the p53 target genes examined. Our results suggest that target genes with low-affinity p53 binding sites may require additional events and will have delayed kinetics of induction compared to those with high-affinity binding sites.
In the present study, we investigated the role of p53 in G 2 checkpoint function by determining the mechanism by which p53 prevents premature exit from G 2 arrest after genotoxic stress. Using three cell model systems, each isogenic, we showed that either ectopic or endogenous p53 sustained a G 2 arrest activated by ionizing radiation or adriamycin. The mechanism was p21 and retinoblastoma protein (pRB) dependent and involved an initial inhibition of cyclin B1-Cdc2 activity and a secondary decrease in cyclin B1 and Cdc2 levels. Abrogation of p21 or pRB function in cells containing wild-type p53 blocked the down-regulation of cyclin B1 and Cdc2 expression and led to an accelerated exit from G 2 after genotoxic stress. Thus, similar to what occurs in p21 and p53 deficiency, pRB loss can uncouple S phase and mitosis after genotoxic stress in tumor cells. These results indicate that similar molecular mechanisms are required for p53 regulation of G 1 and G 2 checkpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.