-Delivery of infected pigs to the slaughterhouse is a major source of pork meat contamination by bacterial hazards to humans. We propose a model of Salmonella spread within a farrow-to-finish pig herd, assuming the prevalence in infected delivered pigs depends on the whole pig life-time and growing process. This stochastic discrete-time model represents both the population dynamics in a farrow-to-finish pig herd using batch management, and Salmonella spread. Four mutually exclusive individual health states were considered: Salmonella-free, seronegative shedder, seropositive shedder and seropositive not shedding carrier, making the distinction between seropositive animals and shedders. Since indirect transmission is the main route of transmission, the probability of infection depends on the quantity of Salmonella in the pigs' environment (Q). A dose effect function is used with two thresholds, assuming saturation in exposure for high Q vs. a minimum exposure for low Q. Salmonella is introduced in an initially Salmonella-free 150-sow herd. Prevalence of shedders and seroprevalence are calculated over time in batches of sows and pigs, and in groups of delivered pigs, composed of pigs from different batches. The model shows very variable seroprevalence over time within a herd among delivered groups, as well as among replications. The mean seroprevalence and the mean shedding prevalence are 19.3% and 13.8% respectively. A sensitivity analysis shows that the Salmonella quantity shed and the maternal protective factor are the most influential parameters on Salmonella prevalence in delivered pigs. swine / Salmonella / epidemiological model / population dynamics / environment
Presence of scrapie infectivity in the placenta suggests the possibility of increased transmission of scrapie during the lambing season. This hypothesis was explored here using a mathematical model of scrapie transmission dynamics which has previously been successfully used to study several scrapie outbreaks in Scottish sheep flocks. It was applied here to the Langlade experimental sheep flock (INRA Toulouse, France), in which a natural scrapie epidemic started in 1993. Extensive data were available, including pedigree, scrapie histopathological diagnoses and PrP genotypes. Detailed simulations of the scrapie outbreak reveal that the observed patterns of seasonality in incidence can not be accounted for by seasonality in demography alone and provide strong support for the hypothesis of increased transmission during lambing. Observations from several other scrapie outbreaks also showing seasonal incidence patterns support these conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.