To study the role of the Pten tumor suppressor in skeletogenesis, we generated mice lacking this key phosphatidylinositol 3-kinase pathway regulator in their osteo-chondroprogenitors. A phenotype of growth plate dysfunction and skeletal overgrowth was observed.Introduction: Skeletogenesis is a complex process relying on a variety of ligands that activate a range of intracellular signal transduction pathways. Although many of these stimuli are known to activate phosphatidylinositol 3Ј-kinase (PI3K), the function of this pathway during cartilage development remains nebulous. To study the role of PI3K during skeletogenesis, we used mice deficient in a negative regulator of PI3K signaling, the tumor suppressor, Pten. Materials and Methods: Pten gene deletion in osteo-chondrodroprogenitors was obtained by interbreeding mice with loxP-flanked Pten exons with mice expressing the Cre recombinase under the control of the type II collagen gene promoter (Pten
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.