BackgroundColon cancer is a highly heterogeneous disease, and identifying molecular subtypes can provide insights into deregulated pathways within tumor subsets, which may lead to personalized treatment options. However, most prognostic models are based on single-pathway genes.MethodsIn this study, we aimed to identify three clinically relevant subtypes of colon cancer based on multiple signaling pathways-related genes. Integrative multi-omics analysis was used to explain the biological processes contributing to colon cancer aggressiveness, recurrence, and progression. Machine learning methods were employed to identify the subtypes and provide medication guidance for distinct subtypes using the L1000 platform. We developed a robust prognostic model (MKPC score) based on gene pairs and validated it in one internal test set and three external test sets. Risk-related genes were extracted and verified by qPCR.ResultsThree clinically relevant subtypes of colon cancer were identified based on multiple signaling pathways-related genes, which had significantly different survival state (Log-Rank test, p<0.05). Integrative multi-omics analysis revealed biological processes contributing to colon cancer aggressiveness, recurrence, and progression. The developed MKPC score, based on gene pairs, was robust in predicting prognosis state (Log-Rank test, p<0.05), and risk-related genes were successfully verified by qPCR (t test, p<0.05). An easy-to-use web tool was created for risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types.ConclusionIn conclusion, our study identified three clinically relevant subtypes of colon cancer and developed a robust prognostic model based on gene pairs. The developed web tool is a valuable resource for researchers and clinicians in risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types.
The COVID-19 pandemic has caused significant damage and led to more than one million deaths in the United States and six million deaths worldwide [1], mainly due to the development of acute respiratory distress syndrome (ARDS). During the period of COVID-19 spread, medical resources have been subjected to tremendous pressure and hospitals which has caused saturation of our health systems. Few therapeutic interventions authorized by the US Food and Drug Administration are available, but vaccine deployment has been slow in many parts of the world. On January 6, 2023, the National Health Commission and the State Administration of Traditional Chinese Medicine issued the "COVID-19 Diagnosis and Treatment Plan (Trial Version 10, http://www.gov.cn/zhengce/zhengceku/ 2023-01/06/content_5735343.htm)." The clinical symptoms of COVID-19 are divided into mild, moderate, severe, and critical. This categorization technique can be beneficial in enhancing doctors' abilities to diagnose and treat patients with COVID-19 and further aid scientists in their comprehension of the disease's development. However, it also has its shortcomings. For example, the varying symptoms that patients display at different stages can complicate the definitive categorization process.
Ensemble learning is a kind of machine learning method which can integrate multiple basic learners together and achieve higher accuracy. Recently, single machine learning methods have been established to predict survival for patients with cancer. However, it still lacked a robust ensemble learning model with high accuracy to pick out patients with high risks. To achieve this, we proposed a novel genetic algorithm-aided three-stage ensemble learning method (3S score) for survival prediction. During the process of constructing the 3S score, double training sets were used to avoid over-fitting; the gene-pairing method was applied to reduce batch effect; a genetic algorithm was employed to select the best basic learner combination. When used to predict the survival state of glioma patients, this model achieved the highest C-index (0.697) as well as area under the receiver operating characteristic curve (ROC-AUCs) (first year = 0.705, third year = 0.825 and fifth year = 0.839) in the combined test set (n = 1191), compared with 12 other baseline models. Furthermore, the 3S score can distinguish survival significantly in eight cohorts among the total of nine independent test cohorts (P < 0.05), achieving significant improvement of ROC-AUCs. Notably, ablation experiments demonstrated that the gene-pairing method, double training sets and genetic algorithm make sure the robustness and effectiveness of the 3S score. The performance exploration on pan-cancer showed that the 3S score has excellent ability on survival prediction in five kinds of cancers, which was verified by Cox regression, survival curves and ROC curves together. To enable its clinical adoption, we implemented the 3S score and other two clinical factors as an easy-to-use web tool for risk scoring and therapy stratification in glioma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.