Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.
Background
Parkinson’s disease (PD) is associated with enteric nervous system dysfunction and gut microbiota dysbiosis. Short-chain fatty acids (SCFAs), derived from gut microbiota, are supposed to anticipate PD pathogenesis via the pathway of spinal cord and vagal nerve or the circulatory system. However, the serum concentration of SCFAs in PD patients is poorly known. This study aims to investigate the exact level of SCFAs in PD patients and its correlation with Parkinson’s symptoms.
Methods
50 PD patients and 50 healthy controls were recruited, and their demographic and clinical characteristics were collected. The serum concentration of SCFAs was detected using a gas chromatography-mass spectrometer. SCFAs were compared between PD and control groups. The correlation between serum SCFAs and Parkinson’s symptoms and the potential effects of medications on the serum SCFAs was analyzed.
Results
Serum propionic acid, butyric acid and caproic acid were lower, while heptanoic acid was higher in PD patients than in control subjects. However, only the serum level of propionic acid was correlated with Unified Parkinson’s Disease Rating Scale (UPDRs) part III score (R = -0.365, P = 0.009), Mini-mental State Examination (MMSE) score (R = -0.416, P = 0.003), and Hamilton Depression Scale (HAMD) score (R = 0.306, P = 0.03). There was no correlation between other serum SCFAs and motor complications. The use of trihexyphenidyl or tizanidine increased the serum concentration of propionic acid.
Conclusions
Serum SCFAs are altered in PD patients, and the decrease of serum propionic acid level is correlated with motor symptoms, cognitive ability and non-depressed state. Thus, the gut microbial-derived SCFAs potentially affect Parkinson’s symptoms through the blood circulation. Propionic acid supplementation might ameliorate motor and non-motor symptoms of PD patients, although clinical trials are needed to test this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.