Abstract-In this paper, a new Frequency-Reconfigurable Stacked Patch Microstrip Antenna (FRSPMA) with a new coupling method applied in an aperture-coupled technique controlled by the switching circuit is presented. This antenna uses a combination of aperturecoupled technique and stacked patch in order for the radiating elements to increase the bandwidth. Two shapes (I-shape and H-shape) and sizes of aperture slots are etched onto the ground with a purpose to couple the energy between feedline and stacked patch. One PIN diode switch is integrated in the feed network to control the length of the feedline. A variation of the feedline length controls the selected aperture slots to be active. The waves from the selected activated aperture slots will radiate to particular radiating patch (top or bottom patch) and achieve the frequency reconfigurability. When the switch is in ON mode, the antenna has a capability to configure its operating frequency at 2.6 GHz and at 3.5 GHz during the OFF mode. Besides that, the air gap is used to improve and avoid any coupling problem between the aperture slots and both of the two patches. Improper alignment between the aperture slots and patches will interfere waves radiating from aperture slots to the particular patch. In addition, the proposed antenna produces a high gain of more than 5 dB during ON or OFF modes, respectively. The simulated results are compared with measured results.
The aim of this paper is to design a novel structure of a frequency-reconfigurable microstrip array antenna by using a combination of aperture-coupled and the stacked patch technology. The four sets of two different aperture slot shapes (I-shaped and H-shaped) are printed on the ground and are functional to transfer the wave and the signal to the selected radiating layers. Both aperture slot positions are based on the bottom patches (layer 2) and top patches (layer 1), respectively. To achieve the frequency reconfigurability, four PIN diode switches are integrated on the feed line layer positioned between both aperture slots on the ground. The activation of the selected patches will determine the current operating frequency of the proposed antenna. A 2.6 GHz or 3.5 GHz frequency is achieved by switching all the PIN diode switches to ON or OFF mode synchronously. The advantage of the proposed antenna is that it can minimize the usage of the antenna’s surface area, with different size of the patch having different operating frequencies, sorted in different layer. The measured results of the return losses, radiation patterns, and the practical indoor propagation measurement achieved good agreement with the simulated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.