Photodynamic therapy (PDT) using talaporfin sodium (TS) is tumor cell-selective less invasive therapy for the treatment of malignant glioma. We previously demonstrated that PDT using TS (TS-PDT) treatment exhibits anti-tumor activity against not only glioblastoma cells but also malignant meningioma cells. In general, various stress response proteins have been reported to affect the sensitivity determination for anticancer agents against tumor cells. However, the relationship between the therapeutic effect of TS-PDT and stress response systems in tumor cells is not adequately investigated. In this study, we investigated the gene expression of stress response proteins, including Sod1, Cat1, Gstp1, Gpx1, Nqo1, and Hmox1, in rat malignant meningioma KMY-J cells after treatment of TS-PDT. TS-PDT treatment significantly decreased the cell viability when compared with the no laser irradiation group. In morphological observation, TS at 25.6 µM treatment exhibited a significant cytotoxic effect after 12 hr of laser irradiation to KMY-J cells. After 3 and 6 hr of TS-PDT treatment, mRNA expression of heme oxygenase-1 (HO-1, encoded by Hmox1) was significantly increased by TS-PDT treatment. We also demonstrated that zinc protoporphyrin IX (ZnPPIX), a HO-1 inhibitor, significantly augmented the cytotoxic effect of TS-PDT treatment. These data suggest that HO-1 induction may contribute to a protective response against TS-PDT treatment in the malignant meningioma cells and may attenuate the therapeutic effect for TS-PDT treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.