The adsorption and decomposition pathways of 1-propanethiol on a Ga-rich GaAs(100) surface have been investigated using the techniques of temperature programmed desorption, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). 1-Propanethiol adsorbs dissociatively on a clean GaAs(100) surface to form propanethiolate and hydrogen. Further reactions of these species to form new products compete with the recombinative desorption of molecular propanethiol. The C-S bond scission in the propanethiolate results in the formation of propyl species and elemental sulfur. The generation of propene via beta-hydride elimination then follows. In addition, propane and hydrogen form via reductive elimination processes. A recombinative high-temperature propanethiol desorption state is also observed. XPS and TOF-SIMS analyses confirm the presence of sulfur on the GaAs(100) surface following thermal decomposition. This paper discusses the mechanisms by which these products form on the GaAs(100) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.