The canonical model of “small cell lung cancer” (SCLC) depicts tumors arising from dual inactivation of TP53 and RB1. However, many genomic studies have persistently identified tumors with no RB1 mutations. Here, we examined RB1 protein expression and function in SCLC. RB1 expression was examined by immunohistochemical analysis of 62 human SCLC tumors. These studies showed that ~14% of SCLC tumors expressed abundant RB1 protein, which is associated with neuroendocrine (NE) gene expression and is enriched in YAP1 expression, but no other lineage proteins that stratify SCLC. SCLC cells and xenograft tumors with RB1 protein expression were sensitive to growth inhibition by the CDK4/6 inhibitor palbociclib, and this inhibition was shown to be dependent on RB1 expression by CRISPR knockout. Furthermore, a patient with biopsy-validated wt RB1 SCLC who received the CDK4/6 inhibitor abemaciclib demonstrated a dramatic decrease in mutant TP53 ctDNA allelic fraction from 62.1% to 0.4% and decreased tumor mass on CT scans. Importantly, immunohistochemistry of the diagnostic biopsy specimen showed RB1 positivity. Finally, we identified a transcriptomics-based RB1 loss-of-function signature that discriminates between SCLC cells with or without RB1 protein expression and validated it in the patient who was responsive to abemaciclib, suggesting its potential use to predict CDK4/6 inhibitor response in SCLC patients. Our study demonstrates that RB1 protein is an actionable target in a subgroup of SCLC, a cancer that exhibits no currently targetable mutations.
Background
Small‐cell lung cancer (SCLC) is the deadliest form of lung cancer but lacks targeted therapies.
Methods
We studied the effect of the natural product mistletoe lectin (ML) in pre‐clinical models of SCLC, focusing on cell lines with amplification of the myc family oncogenes C‐myc and N‐myc.
Results
We found that ML treatment inhibits growth of SCLC cell lines in culture and induces apoptosis. ML treatment also decreases the expression of the amplified myc proteins. Over‐expression of either C‐myc or N‐myc results in enhanced SCLC cell sensitivity to ML. In a mouse xenograft model of SCLC, treatment with ML results in decreased tumor growth over 4 weeks with evidence of increased apoptosis in tumors from treated animals.
Conclusion
Overall, our results demonstrate that ML exhibits therapeutic potential in SCLC, that is at least partially dependent on myc protein expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.