In this paper, free vibration analysis of magneto-electro-elastic (MEE) cylindrical composite panel reinforced by various distributions of carbon nanotubes (CNTs) considering open and closed circuits boundary conditions based on the first order shear deformation theory (FSDT) is carried out. Carbon nanotubes (CNTs) in Poly-vinylidene fluoride (PVDF) matrix are arranged and different distribution patterns of CNTs including uniform distribution (UD), FG-V, FG-A, FG-X and FG-O are employed. The Young’s and shear moduli are obtained using the extended mixture rule. Also, the material properties of magneto-electric fiber reinforced composite are estimated by mixture rule. By employing energy method and Hamilton’s principle, the equations of motion for cylindrical composite panel reinforced by CNTs are derived. In this paper, the effects of the volume fraction, various distributions of CNTs including uniform and functionally graded (FG) distributions, angle orientation, two elastic foundation parameters, aspect ratio (length-to-thickness ratio), radius-to-thickness ratio, and the multi-physical fields with open and closed circuits boundary conditions on the natural frequency of MEE cylindrical composite panel are considered. These effects play an important role on the natural frequencies. Moreover, the numerical results of this research can be used to manufacturing process design and optimization MEE cylindrical composite panel under multi-physical fields and the previous results can be used in order to prevent the resonance phenomenon.
In this article, based on high-order sandwich panel theory and modified strain gradient theory, free vibration analysis of a micro-magneto-electro-elastic sandwich panel with a transversely flexible core and functionally graded carbon nanotube–reinforced nanocomposite face sheets is investigated. Also, the influences of temperature-dependent material properties and various circuit boundary conditions such as open and closed are considered in this study. Carbon nanotubes are arranged in longitudinal direction inside polyvinylidene fluoride matrix with various functionally graded (FG) distributions such as uniform, FG-V, FG-A, FG-X, and FG-O in the face sheets. The generalized rule of mixture is employed to predict mechanical, electrical, magnetic, and thermal properties of micro-sandwich composite panel. The classical shell theory and an elasticity high-order theory are used for the face sheets and the core, respectively. Then, the governing equations of motion are derived using Hamilton’s principle. In this article, the influences of the volume fraction, the various distributions of carbon nanotubes, the multi-physical fields, open- and closed-circuit boundary conditions, the material length scale parameters, different face sheet and core thicknesses, and temperature changes on the natural frequency are investigated, and the obtained results show that these influences play an important role in the natural frequencies and can be used in order to prevent the resonance phenomenon and also for manufacturing process design and optimization of micro-magneto-electro-elastic composite sandwich cylindrical panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.