Iype, E.; Hütter, M.; Jansen, A.P.J.; Gaastra -Nedea, S.V.; Rindt, C.C.M. • A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication Citation for published version (APA):Iype, E., Hutter, M., Jansen, A. P. J., Nedea, S. V., & Rindt, C. C. M. (2013). Parameterization of a reactive force field using a Monte Carlo algorithm. Journal of Computational Chemistry, 34(13), 1143-1154. DOI: 10.1002/jcc.23246 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Parameterization of a Reactive Force Field using a Monte Carlo algorithmIype E * , Hütter M * , Jansen A P J † , Nedea S V * , Rindt C C M * ‡ November 6, 2015 AbstractParameterization of a Molecular Dynamics force field is essential in realistically modelling the physico-chemical processes involved in a molecular system. This step is often challenging when the equations involved in describing the force field are complicated as well as when the parameters are mostly empirical. ReaxFF is one such reactive force field which uses hundreds of parameters to describe the interactions between atoms. The optimization of the parameters in ReaxFF is done such that the the properties predicted by ReaxFF matches with a set of quantum chemical or experimental data. Usually, the optimization of the parameters is done by an inefficient single parameter parabolic-search algorithm. In this study, we use a robust Metropolis Monte-Carlo algorithm with Simulated Annealing (MMC-SA) to search for the optimum parameters for the ReaxFF force field in a high-dimensional parameter space. The optimization is done against a set of quantum chemical data for M gSO 4 hydrates. The optimized force field reproduced the chemical structures, the Equations of State and the water binding curves of M gSO 4 hydrates. The transferability test o...
We have used Monte Carlo methods and analytical techniques to investigate the influence of the characteristic parameters, such as pipe length, diffusion, adsorption, desorption, and reaction rate constants on the steady-state properties of single-file systems with a reaction. We looked at cases when all the sites are reactive and when only some of them are reactive. Comparisons between mean-field predictions and Monte Carlo simulations for the occupancy profiles and reactivity are made. Substantial differences between mean-field and the simulations are found when rates of diffusion are high. Mean-field results only include single-file behavior by changing the diffusion rate constant, but it effectively allows passing of particles. Reactivity converges to a limit value if more reactive sites are added: sites in the middle of the system have little or no effect on the kinetics. Occupancy profiles show approximately exponential behavior from the ends to the middle of the system.
Magnesium chloride hydrates are characterized as promising energy storage materials in the built-environment. During the dehydration of these materials, there are chances for the release of harmful HCl gas, which can potentially damage the material as well as the equipment. Hydrolysis reactions in magnesium chloride hydrates are subject of study for industrial applications. However, the information about the possibility of hydrolysis reaction, and its preference over dehydration in energy storage systems is still ambiguous at the operating conditions in a seasonal heat storage system. A density functional theory level study is performed to determine molecular structures, charges, and harmonic frequencies in order to identify the formation of HCl at the operating temperatures in an energy storage system. The preference of hydrolysis over dehydration is quantified by applying thermodynamic equilibrium principles by calculating Gibbs free energies of the hydrated magnesium chloride molecules. The molecular structures of the hydrates (n = 0, 1, 2, 4, and 6) of MgCl2 are investigated to understand the stability and symmetry of these molecules. The structures are found to be noncomplex with almost no meta-stable isomers, which may be related to the faster kinetics observed in the hydration of chlorides compared to sulfates. Also, the frequency spectra of these molecules are calculated, which in turn are used to calculate the changes in Gibbs free energy of dehydration and hydrolysis reactions. From these calculations, it is found that the probability for hydrolysis to occur is larger for lower hydrates. Hydrolysis occurring from the hexa-, tetra-, and di-hydrate is only possible when the temperature is increased too fast to a very high value. In the case of the mono-hydrate, hydrolysis may become favorable at high water vapor pressure and at low HCl pressure.
Magnesium salt hydrates are potential thermo-chemical energy storage materials considering their high energy storage density and their availability. However, in practical applications, these materials suffer from low efficiency due to their sluggish kinetics and significant structural changes during hydration and dehydration. A DFT PW91-TZ2P level optimization is performed on the various hydrates of magnesium sulfate molecules to study their structural properties. The study identifies a wide network of hydrogen bonds that is significantly influencing the chemical structure of the molecules. These hydrogen bonds appear to cause distortions in the hydrated structures and even hinder the coordination of water with magnesium, resulting in lower-energy isomers. In the case of hexahydrated isomers, the hydrogen bond stabilizes a conformation that has only four coordinated water molecules and is energetically more stable than the conformation with six coordinated water molecules. The sluggish hydration kinetics in magnesium sulfate is attributed to the strong hydrogen bond network present in the crystals. In addition, the hexahydrated structure exhibits an intramolecular proton-transfer reaction. This suggests that the strong hydrogen bond interactions potentially dissociate water molecules during hydration.
We have used Monte Carlo methods and analytical techniques to investigate the influence of the characteristics, such as pipe length, diffusion, adsorption, desorption, and reaction rates on the transient properties of single-file systems. The transient or the relaxation regime is the period in which the system is evolving to equilibrium. We have studied the system when all the sites are reactive and also when only some of them are reactive. Comparisons between mean-field predictions, cluster approximation predictions, and Monte Carlo simulations for the relaxation time of the system are shown. We outline the cases where the mean-field analysis gives good results compared to dynamic Monte Carlo results. For some specific cases we can analytically derive the relaxation time. Occupancy profiles for different distributions of the sites both for the mean field and simulations are compared. Different results for slow and fast reaction systems and different distributions of reactive sites are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.