Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (∼350 devices), fast switching (≤30 ns), excellent endurance (∼10 cycles), stability (>10 s) and scalability (down to ∼60 nm). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.
Oxide-derived copper (OD-Cu) catalysts are promising candidates for the electrochemical CO 2 reduction reaction (CO 2 RR) due to the enhanced selectivity toward ethylene over methane evolution, which has been linked to the presence of subsurface oxygen (O sb ). In this work, O sb is investigated with theoretical methods. Although O sb is unstable in slab models, it becomes stabilized within a "manually" reduced OD-Cu nanocube model which was calculated by self-consistent charge density functional tight binding (SCC-DFTB). The results obtained with SCC-DFTB for the full nanocube were confirmed with subcluster models extracted from the nanocube, calculated with both density functional theory (DFT) and SCC-DFTB. The higher stability of O sb in the nanocube is attributed to the disordered structure and greater flexibility. The adsorption strength of CO on Cu(100) is enhanced by O sb withdrawing electron density from the Cu atom, resulting in reduction of the σ-repulsion. Hence, the coverage of CO may be increased, facilitating its dimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.