A novel coronavirus (CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan, China and has since spread as a global pandemic. Safe and effective vaccines are thus urgently needed to reduce the significant morbidity and mortality of Coronavirus Disease 2019 (COVID-19) disease and ease the major economic impact. There has been an unprecedented rapid response by vaccine developers with now over one hundred vaccine candidates in development and at least six having reached clinical trials. However, a major challenge during rapid development is to avoid safety issues both by thoughtful vaccine design and by thorough evaluation in a timely manner. A syndrome of ''disease enhancement" has been reported in the past for a few viral vaccines where those immunized suffered increased severity or death when they later encountered the virus or were found to have an increased frequency of infection. Animal models allowed scientists to determine the underlying mechanism for the former in the case of Respiratory syncytial virus (RSV) vaccine and have been utilized to design and screen new RSV vaccine candidates. Because some Middle East respiratory syndrome (MERS) and SARS-CoV-1 vaccines have shown evidence of disease enhancement in some animal models, this is a particular concern for SARS-CoV-2 vaccines. To address this challenge, the Coalition for Epidemic Preparedness Innovations (CEPI) and the Brighton Collaboration (BC) Safety Platform for Emergency vACcines (SPEAC) convened a scientific working meeting on March 12 and 13, 2020 of experts in the field of vaccine immunology and coronaviruses to consider what vaccine designs could reduce safety concerns
5Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-␣), interleukin-1␣ (IL-1␣), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1␣, IL-6, and TNF-␣ production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.
A nasal vaccine, consisting of outer membrane vesicles (OMVs) from group B Neisseria meningitidis, was given to 12 volunteers in the form of nose drops or nasal spray four times at weekly intervals, with a fifth dose 5 months later. Each nasal dose consisted of 250 μg of protein, equivalent to 10 times the intramuscular dose that was administered twice with a 6-week interval to 11 other volunteers. All individuals given the nasal vaccine developed immunoglobulin A (IgA) antibody responses to OMVs in nasal secretions, and eight developed salivary IgA antibodies which persisted for at least 5 months. Intramuscular immunizations did not lead to antibody responses in the secretions. Modest increases in serum IgG antibodies were obtained in 5 volunteers who had been immunized intranasally, while 10 individuals responded strongly to the intramuscular vaccine. Both the serum and secretory antibody responses reached a maximum after two to three doses of the nasal vaccine, with no significant booster effect of the fifth dose. The pattern of serum antibody specificities against the different OMV components after intranasal immunizations was largely similar to that obtained with the intramuscular vaccine. Five and eight vaccinees in the nasal group developed persistent increases in serum bactericidal titers to the homologous meningococcal vaccine strain expressing low and high levels, respectively, of the outer membrane protein Opc. Our results indicate that meningococcal OMVs possess the structures necessary to initiate systemic as well as local mucosal immune responses when presented as a nasal vaccine. Although the serum antibody levels were less conspicuous than those after intramuscular vaccinations, the demonstration of substantial bactericidal activity indicates that a nonproliferating nasal vaccine might induce antibodies of high functional quality.
SUMMARYTumour necrosis factor-alpha (TNF-a ), IL-1a and IL-6 production by human monocytes in response to a clinical strain of the Gram-negative encapsulated bacteria Neisseria meningitidis and an isogenic lpxA 2 strain deficient in LPS was investigated. Wild-type N. meningitidis at concentrations between 10 5 and 10 8 organisms/ml and purified LPS induced proinflammatory cytokine production. High levels of these cytokines were also produced in response to the lpxA 2 strain at 10 7 and 10 8 organisms/ml. The specific LPS antagonist bactericidal/permeability-increasing protein (rBPI 21 ) inhibited cytokine production induced by LPS and wild-type bacteria at 10 5 organisms/ml but not at higher concentrations, and not by LPS-deficient bacteria at any concentration. These data show that proinflammatory cytokine production by monocytes in response to N. meningitidis does not require the presence of LPS. Therapeutic strategies designed to block LPS alone may not therefore be sufficient for interrupting the inflammatory response in severe meningococcal disease.
· ZusammenfassungBundesgesundheitsbl 2020 · 63:65-73 https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.