Background Understanding genetic architecture is essential for determining how traits will change in response to evolutionary processes such as selection, genetic drift and/or gene flow. In Atlantic salmon, age at maturity is an important life history trait that affects factors such as survival, reproductive success, and growth. Furthermore, age at maturity can seriously impact aquaculture production. Therefore, characterizing the genetic architecture that underlies variation in age at maturity is of key interest. Results Here, we refine our understanding of the genetic architecture for age at maturity of male Atlantic salmon using a genome-wide association study of 11,166 males from a single aquaculture strain, using imputed genotypes at 512,397 single nucleotide polymorphisms (SNPs). All individuals were genotyped with a 50K SNP array and imputed to higher density using parents genotyped with a 930K SNP array and pedigree information. We found significant association signals on 28 of 29 chromosomes (P-values: 8.7 × 10−133–9.8 × 10−8), including two very strong signals spanning the six6 and vgll3 gene regions on chromosomes 9 and 25, respectively. Furthermore, we identified 116 independent signals that tagged 120 candidate genes with varying effect sizes. Five of the candidate genes found here were previously associated with age at maturity in other vertebrates, including humans. Discussion These results reveal a mixed architecture of large-effect loci and a polygenic component that consists of multiple smaller-effect loci, suggesting a more complex genetic architecture of Atlantic salmon age at maturity than previously thought. This more complex architecture will have implications for selection on this key trait in aquaculture and for management of wild salmon populations.
Reliability of genomic selection (GS) models was tested in an admixed population of Atlantic salmon, originating from crossing of several wild subpopulations. The models included ordinary genomic BLUP models (GBLUP), using genome-wide SNP markers of varying densities (1–220 k), a genomic identity-by-descent model (IBD-GS), using linkage analysis of sparse genome-wide markers, as well as a classical pedigree-based model. Reliabilities of the models were compared through 5-fold cross-validation. The traits studied were salmon lice (Lepeophtheirus salmonis) resistance (LR), measured as (log) density on the skin and fillet color (FC), with respective estimated heritabilities of 0.14 and 0.43. All genomic models outperformed the classical pedigree-based model, for both traits and at all marker densities. However, the relative improvement differed considerably between traits, models and marker densities. For the highly heritable FC, the IBD-GS had similar reliability as GBLUP at high marker densities (>22 k). In contrast, for the lowly heritable LR, IBD-GS was clearly inferior to GBLUP, irrespective of marker density. Hence, GBLUP was robust to marker density for the lowly heritable LR, but sensitive to marker density for the highly heritable FC. We hypothesize that this phenomenon may be explained by historical admixture of different founder populations, expected to reduce short-range lice density (LD) and induce long-range LD. The relative importance of LD/relationship information is expected to decrease/increase with increasing heritability of the trait. Still, using the ordinary GBLUP, the typical long-range LD of an admixed population may be effectively captured by sparse markers, while efficient utilization of relationship information may require denser markers (e.g., 22 k or more).
BackgroundIt has been suggested that the high phospholipid (PL) requirement in Atlantic salmon (Salmo salar) fry is due to insufficient intestinal de-novo synthesis causing low lipoprotein (LP) production and reduced transport capacity of dietary lipids. However, in-depth ontogenetic analysis of intestinal PL and LP synthesis with the development of salmon has yet to be performed. Therefore, in this paper we used RNA-Seq technology to investigate the expression of genes involved in PL synthesis and LP formation throughout early developmental stages and associate insufficient expression of synthesis pathways in salmon fry with its higher dietary PL requirement. There was a special focus on the understanding homologous genes, especially those from salmonid-specific fourth vertebrate whole-genome duplication (Ss4R), and their contribution to salmonid specific features of regulation of PL metabolic pathways. Salmon fry were sampled at 0.16 g (1 day before first-feeding), 2.5 and 10 g stages of development and transcriptomic analysis was applied separately on stomach, pyloric caeca and hindgut of the fish.ResultsIn general, we found up-regulated pathways involved in synthesis of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), and LP in pyloric caeca of salmon between 0.16 and 10 g. Thirteen differentially expressed genes (q < 0.05) in these pathways were highly up-regulated in 2.5 g salmon compared to 0.16 g, while only five more differentially expressed (q < 0.05) genes were found when the fish grew up to 10 g. Different homologous genes were found dominating in stomach, pyloric caeca and hindgut. However, the expression of dominating genes in pathways of PL and LP synthesis were much higher in pyloric caeca than stomach and hindgut. Salmon-specific homologous genes (Ss4R) had similar expression during development, while other homologs had more diverged expression.ConclusionsThe up-regulation of the de-novo PtdCho and PtdEtn pathways confirm that salmon have decreasing requirement for dietary PL as the fish develops. The similar expressions between Ss4R homologous genes suggest that the functional divergence of these genes was incomplete compared to homologs derived from other genome duplication. The results of the present study have provided new information on the molecular mechanisms of phospholipid synthesis and lipoprotein formation in fish.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4651-8) contains supplementary material, which is available to authorized users.
In salmon farming, the scarcity of fish oil has driven a shift towards the use of plant-based oil from vegetable or seed, leading to fish feed low in long-chain PUFA (LC-PUFA) and cholesterol. Atlantic salmon has the capacity to synthesise both LC-PUFA and cholesterol, but little is known about the regulation of synthesis and how it varies throughout salmon life span. Here, we present a systemic view of lipid metabolism pathways based on lipid analyses and transcriptomic data from salmon fed contrasting diets of plant or fish oil from first feeding. We analysed four tissues (stomach, pyloric caeca, hindgut and liver) at three life stages (initial feeding 0·16 g, 2·5 g fingerlings and 10 g juveniles). The strongest response to diets higher in plant oil was seen in pyloric caeca of fingerlings, with up-regulation of thirty genes in pathways for cholesterol uptake, transport and biosynthesis. In juveniles, only eleven genes showed differential expression in pyloric caeca. This indicates a higher requirement of dietary cholesterol in fingerlings, which could result in a more sensitive response to plant oil. The LC-PUFA elongation and desaturation pathway was down-regulated in pyloric caeca, probably regulated by srebp1 genes. In liver, cholesterol metabolism and elongation and desaturation genes were both higher on plant oil. Stomach and hindgut were not notably affected by dietary treatment. Plant oil also had a higher impact on fatty acid composition of fingerlings compared with juveniles, suggesting that fingerlings have less metabolic regulatory control when primed with plant oil diet compared with juveniles.
BackgroundIt has been suggested that the high phospholipid (PL) requirement in Atlantic salmon (Salmo salar) fry is due to insufficient intestinal de-novo synthesis causing low lipoprotein (LP) production and reduced transport capacity of dietary lipids. However, there has not been performed any in-depth ontological analysis of intestinal PL and LP synthesis with development of salmon. Therefore in this paper we used RNA-seq technology to test the hypothesis that the high PL requirement in salmon fry was associated with undeveloped PL synthesis and LP formation pathways in intestine. There was a special focus on the understanding homologous genes, especially from salmonid-specific fourth vertebrate whole-genome duplication (Ss4R), contribution to salmonid specific features of regulation of PL metabolic pathways. The study was performed in stomach, pyloric caeca and hindgut at 0.16g (1 day before first-feeding), 2.5g and 10g of salmon.ResultsIn general, we found an up-regulation of de-novo phosphatidylcholine (PtdCho) synthesis, phosphatidylethanolamine (PtdEtn) and LP formation pathways in pyloric caeca of salmon between 0.16g and 10g. Thirteen genes in these pathways were highly (q<0.05) up-regulated in 2.5g salmon compared to 0.16g, while only five more significant (q<0.05) genes were found when the fish grew up to 10g. Different homologous genes were found dominating in stomach, pyloric caeca and hindgut. However, the expression of dominating genes in PL and LP synthesis pathways was much higher in pyloric caeca than stomach and hindgut. Salmon-specific homologous (Ss4R) genes had similar expression during development, while other homologs had more diverged expression.ConclusionsAn increasing capacity for PL synthesis and LP formation was confirmed in pyloric caeca. The up-regulation of the de-novo PtdCho pathway confirms that the salmon fry have increasing requirement for dietary PtdCho compared to adult. The similar expressions between Ss4R homologous genes suggest that the functional divergence of these genes was incomplete compared to homologs derived from other whole genome duplication. The results of the present study have provided new information on the molecular mechanisms of phospholipid synthesis and lipoprotein formation in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.