Abstract. Gapped ground states of quantum spin systems have been referred to in the physics literature as being 'in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s ∈ [0, 1], such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinitedimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.
The adiabatic theorem refers to a setup where an evolution equation contains a timedependent parameter whose change is very slow, measured by a vanishing parameter . Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.
Using operator algebraic methods we show that the moment generating function of charge transport in a system with infinitely many non-interacting Fermions is given by a determinant of a certain operator in the one-particle Hilbert space. The formula is equivalent to a formula of Levitov and Lesovik in the finite dimensional case and may be viewed as its regularized form in general. Our result embodies two tenets often realized in mesoscopic physics, namely, that the transport properties are essentially independent of the length of the leads and of the depth of the Fermi sea.
We propose an index for pairs of a unitary map and a clustering state on manybody quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued and stable under perturbations. In general, the index measures the charge transport across a fiducial line. We show that it reduces to (i) an index of projections in the case of non-interacting fermions, (ii) the charge density for translational invariant systems, and (iii) the quantum Hall conductance in the two-dimensional setting without any additional symmetry. Example (ii) recovers the Lieb-Schultz-Mattis theorem, and (iii) provides a new and short proof of quantization of Hall conductance in interacting many-body systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.