Pharmaceuticals and their metabolites have developed as ecotoxicologically relevant micropollutants in the aquatic environment. During conventional biological wastewater treatment they are eliminated insufficiently and therefore reach surface waters via discharges. They are either partially or completely non-biodegradable and/or hardly eliminable by activated sludge adsorption because they often have polar structures. Membrane bioreactor treatment (MBR) was applied to pre-treat wastewater containing pharmaceutical compounds, e.g., antibiotics like floxacins and their synthetic precursor compounds. Our objectives were to eliminate these persistent target compounds from wastewater prior to discharge into receiving waters. Therefore an advanced treatment applying MBR combined with different chemical and physicochemical processes was performed. The addition of powdered activated carbon (PAC), nano filtration (NF), reverse osmosis (UO) or ozone (O3) and O3/UV were applied to MBR permeate spiked with the selected target compounds. Treatment efficiency was assessed using conventional inorganic and organic chemical analyses besides advanced physicochemical methods like liquid chromatography coupled with mass and tandem mass spectrometry (LC-MS and -MS-MS).
The paper describes an experimental investigation of the stator hub and blade flow in two different stators of a highly loaded single-stage axial-flow low-speed compressor. The first stator (A) is a conventional design with blades of rectangular planform. The second stator (K) is an unconventional, more advanced design with blades of a special planform, characterized by an aft-swept leading edge with increasing sweep angle towards hub and casing. The experimental results show that stator K exhibits a much better hub performance than stator A, finally leading to a better overall performance of stage K compared to stage A. The better hub performance of stator K is, primarily, the result of a planform effect of the newly introduced blades with an aft-swept leading edge and the aerodynamics of an aft-swept wing.
The paper describes an experimental investigation of the stator hub and blade flow in two different stators of a highly loaded single-stage axial-flow low-speed compressor. The first stator (A) is a conventional design with blades of rectangular planform. The second stator (K) is an unconventional, more advanced design with blades of a special planform, characterized by an aft-swept leading edge with increasing sweep angle toward hub and casing. The experimental results show that stator K exhibits a much better hub performance than stator A, finally leading to a better overall performance of stage K compared to stage A. The better hub performance of stator K is, primarily, the result of a planform effect of the newly introduced blades with an aft-swept leading edge and the aerodynamics of an aft-swept wing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.