Ammonium nitrate and calcium ammonium nitrate are the most commonly used straight nitrogen fertilisers in Europe, accounting for 43% of the total nitrogen used for fertilisers. They are both produced in a similar way; carbonate can be added as a last step to produce calcium ammonium nitrate. The environmental impact, fossil energy input and land use from using gasified biomass (cereal straw and short rotation willow (Salix) coppice) as feedstock in ammonium nitrate production were studied in a cradleto-gate evaluation using life cycle assessment methodology. The global warming potential in the biomass systems was only 22-30% of the impact from conventional production using natural gas. The eutrophication potential was higher for the biomass systems due to nutrient leaching during cultivation, while the acidification was about the same in all systems. The primary fossil energy use was calculated to be 1.45 and 1.37 MJ per kg nitrogen for Salix and straw respectively, compared to 35.14 MJ for natural gas. The biomass production was assumed to be self-supporting with nutrients by returning part of the ammonium nitrate produced together with the ash from the gasification. For the production of nitrogen from Salix, it was calculated that 3914 kg of nitrogen can be produced every year from 1 ha, after that 1.6% of the produced nitrogen has been returned to the Salix production. From wheat straw, 1615 kg of nitrogen can be produced annually from 1 ha, after that 0.6% of the nitrogen has been returned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.