Serial femtosecond crystallography is a new method for protein structure determination utilizing intense and destructive X-ray pulses generated by free-electron lasers. The approach requires the means to deliver hydrated protein crystals to a focused X-ray beam and replenish them at the repetition rate of the pulses. A liquid-jet sample delivery system where a gas dynamic virtual nozzle is printed directly on a silicon-glass microfluidic chip using a 2-photon-polymerization 3D printing process is implemented. This allows for rapid prototyping and high-precision production of nozzles to suit the characteristics of a particular sample and opens up the possibility for high-throughput and versatile sample delivery systems that can integrate microfluidic components for sample detection, characterisation, or control. With the hybrid system described here, stable liquid jets with diameters between 1.5 µm at liquid flow rate of 1.5 µl/min and more than 20 µm at liquid flow rate of 100 µl/min under atmospheric and vacuum conditions are generated. The combination of 2D lithography with direct 3D printing may streamline the integration of free-form-features and also facilitate scale-up production of such integrated microfluidic devices that may be useful in many other applications such as flow cytometry and optofluidics.
High-speed liquid micro-jets are used to rapidly and repeatedly deliver protein microcrystals to focused and pulsed X-ray beams in the method of serial femtosecond crystallography. However, the current continuous flow of crystals is mismatched to the arrival of X-ray pulses, wasting vast amounts of an often rare and precious sample. Here, we introduce a method to address this problem by periodically trapping and releasing crystals in the liquid flow, creating locally concentrated crystal bunches, using an optical trap integrated in the microfluidic supply line. We experimentally demonstrate a 30-fold increase of particle concentration into 10 Hz bunches of 6.4 μm diameter polystyrene particles. Furthermore, using particle trajectory simulations, a comprehensive description of the optical bunching process and parameter space is presented. Adding this compact optofluidics device to existing injection systems would thereby dramatically reduce sample consumption and extend the application of serial crystallography to a greater range of protein crystal systems that cannot be produced in high abundance. Our approach is suitable for other microfluidic systems that require synchronous measurements of flowing objects.
The downscale of different unit operations for the biocatalytic carboligation of benzaldehyde and acetaldehyde catalyzed by benzoylformate decarboxylase from Pseudomonas putida was investigated. The reactor volume was reduced to 115 μ l thus enabling a substrate and enzyme saving by a factor of 52 in comparison to standard laboratory techniques. Additionally, the successful downscale of membrane based liquid-liquid contactors was shown, which allows, for example, the screening of solvents for extraction as well as the feed of a substrate. Here, comparable volumes as well as residence times were realized, enabling the integration of all three unit operations.
A concept for the determination of concentrations in microchannels using FT-IR spectroscopy in transmission is presented. The fundamental idea of spatially resolved measurements along several measuring points was implemented in a single-channel microreactor. Compared to existing microreactor setups for the analysis of fast chemical reactions or mixing processes, the presented concept enables longer residence times at appropriate resolution. Once steady-state conditions were reached in the reactor, mid-infrared spectra were collected at different locations. Information throughout the considered conversion range is available, which is of great importance to analyze inhibitory effects, next to the kinetic constants (vmax and KM). Therefore, this technology enables a rapid screening of (bio-)catalysts, substrate specificity and process conditions. In particular, the analysis of real substrates instead of model substrates and the possibility to follow side reactions and follow-up reactions during enzymatic catalysis open a broad field of application.
Modular milli- and micro-structured systems represent a promising approach to exploit the potential of micro-process technology, including precise reaction control and scale-up. A major drawback of micro-structured devices is fouling and mixing mechanisms need to be investigated phenomenologically to better understand the processes that lead to fouling. Previous work was conducted to resolve 3D concentration fields by means of Laser-Induced Fluorescence (LIF) using a Confocal Laser Scanning Microscope (CLSM) (Frey et al., J Flow Chem, 2021, 11, 599–609). While the CLSM-LIF method yields detailed insight into concentration fields down to a few micrometers, it is limited to stationary flow structures only. Aubin et al. (Chemical Engineering Science, 2010, 65, 2065–2093) give a comprehensive review of methods to analyze mixing behavior. Most recent optical measurement methods rely on the detection of a single compound in mixtures. In case of reactive mixing, Tthe state of the art procedures to locally visualize micro mixing relies on tracking a reaction product which forms on molecular scale. In literature, only small micro-structures are manufactured from transparent materials, however larger milli-structures often lack optical accesses with sufficient quality. Selective laser-induced etching (SLE) is a new technique which enables the fabrication of larger milli-structures in transparent materials that are relevant for industry-scale applications. This work develops a method based on a concept of Kexel et al. (Chemie Ingenieur Technik, 2021, 93, 830–837) visualizing the selectivity of a competitive-consecutive gas-liquid reaction in a Taylor bubble flow. The main goal of this work is the analysis of the absorbance spectra of bromothymol blue (BTB) at different pH values in a miscible liquid-liquid system in a fused silica split-and-recombine mixer. The milli-structure of the mixer is manufactured by means of SLE. Backlight at different wavelengths is pulsed matching the recording frequency. In contrast to conventional UV/Vis setups, the absorbance is recorded locally within the mixer. The proposed method yields the 2D concentration distribution of multiple species with high spatial resolution. The spatially resolved reactant and product distribution unveils micro mixing and can yield important information about local root causes of fouling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.