We propose an automated method for exploring kinetic parameters of stochastic biochemical systems. The main question addressed is how the validity of an a priori given hypothesis expressed as a temporal logic property depends on kinetic parameters. Our aim is to compute a landscape function that, for each parameter point from the inspected parameter space, returns the quantitative model checking result for the respective continuous time Markov chain. Since the parameter space is in principle dense, it is infeasible to compute the landscape function directly. Hence, we design an effective method that iteratively approximates the lower and upper bounds of the landscape function with respect to a given accuracy. To this end, we modify the standard uniformization technique and introduce an iterative parameter space decomposition. We also demonstrate our approach on two biologically motivated case studies.
Studies of cells in silico can greatly reduce the need for expensive and prolonged laboratory experimentation. The use of model checking for the analysis of biological networks has attracted much attention recently. One of the practical limitations is the size of the model. In the paper we report on parallel model checking of genetic regulatory network using the model-checker DiVinE. The approach can check linear time properties on large networks.
We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.
In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study
In this paper a novel tool BioDiVinE for parallel analysis of biological models is presented. The tool allows analysis of biological models specified in terms of a set of chemical reactions. Chemical reactions are transformed into a system of multi-affine differential equations. BioDiVinE employs techniques for finite discrete abstraction of the continuous state space. At that level, parallel analysis algorithms based on model checking are provided. In the paper, the key tool features are described and their application is demonstrated by means of a case study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.