A gas aggregation source based on DC magnetron sputtering was investigated using a passive thermal probe and supplementary diagnostics (Langmuir probe and quartz crystal microbalance). Parameter variations of pressure, axial distance, and magnetron current have been performed for three different targets (pure Cu, pure W, composite Cu/W) in argon discharge. The measurements showed the energy flux to be significantly higher for the case of the pure tungsten and the composite target compared to the copper target, which is likely a result of the strongly increased amount of neutrals being reflected from the heavier targets. Furthermore, gas rarefaction by the sputtered atoms was found to be essential for the understanding of the observed energy flux and that the dominant contributors to the energy flux in the higher pressure regime are comparable to those observed in the conventional lower pressure regime. Selected deposited films have been investigated ex-situ by scanning electron microscopy, which allowed us to gain insight into the nanoparticle formation in relation to the observed energy conversion.
The characterization of plasma and atomic radical parameters along with the energy influx from plasma to the substrate during plasma enhanced chemical vapor deposition (PECVD) of Si quantum dot (QD) films is presented and discussed. In particular, relating to the Si QD process optimization and control of film growth, the necessity to control the deposition environment by inducing the effect of the energy of the key plasma species is realized. In this contribution, we report dual frequency PECVD processes for the low-temperature and high-rate deposition of Si QDs by chemistry and energy control of the key plasma species. The dual frequency plasmas can effectively produce a very high plasma density and atomic H and N densities, which are found to be crucial for the growth and nucleation of QDs. Apart from the study of plasma chemistry, the crucial role of the energy imparted due to these plasma activated species on the substrate is determined in light of QD formation. Various plasma diagnostics and film analysis methods are integrated to correlate the effect of plasma and energy flux on the properties of the deposited films prepared in the reactive mixtures of SiH/NH at various pressures. The present results are highly relevant to the development of the next-generation plasma process for devices that rely on effective control of the QD size and film properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.