A natural product collection and natural-product-derived combinatorial libraries were virtually screened for potential inhibitors of human 5-lipoxygenase (5-LO) activity. We followed a sequential ligand-based approach in two steps. First, similarity searching with a topological pharmacophore descriptor (CATS 2D method) was performed to enable scaffold-hopping. Eighteen compounds were selected from a virtual hit list of 430 substances, which had mutual pharmacophore features with at least one of 43 known 5-LO inhibitors that served as query structures. Two new chemotypes exhibited significant activity in a cell-based 5-LO activity assay. The two most potent molecules served as seed structures for a second virtual screening round. This time, a focused natural-product-derived combinatorial library was analyzed by different ligand-based virtual screening methods. The best molecules from the final set of screening candidates potently suppressed 5-LO activity in intact cells and may represent a novel class of 5-LO inhibitors. The results demonstrate the potential of natural-product-derived screening libraries for hit and lead structure identification.
The progression of cancer is accelerated by increased proliferation, angiogenesis, and inflammation. These processes are mediated by leukotrienes. Several cancer cell lines overexpress 5-lipoxygenase, an enzyme that converts arachidonic acid into leukotrienes. An early inhibitor of the 5-lipoxygenase pathway is Rev-5901, which, however, lacks in in vivo efficacy, as it is rapidly metabolized. We investigated the introduction of carboranes as highly hydrophobic and metabolically stable pharmacophores into lipoxygenase inhibitors. Carboranes are icosahedral boron clusters that are remarkably stable and used to increase the metabolic stability of unstable pharmaceutics without changing their biological activity. By introduction of meta-carborane into Rev-5901, the first carborane-based inhibitor of the 5-lipoxygenase pathway was obtained. We report the synthesis and inhibitory and cytotoxic behavior of these compounds toward several melanoma and colon cancer cell lines and their related anticancer mechanisms.
A novel class of potent 5-lipoxygenase (5-LO) product synthesis inhibitors based on the structure of pirinixic acid (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid, compound 1) is presented. Systematic profiling of 1, i.e., esterification of the carboxylic acid, alpha-substitution, and replacement of the o-dimethylaniline by 6-aminoquinoline, leads to potent suppressors of 5-LO product formation in activated polymorphonuclear leukocytes, exemplified by ethyl 2-[4-chloro-6-(quinoline-6-ylamino)-pyrimidin-2-ylsulfanyl]octane-1-carboxylate (6d, IC50 = 0.6 microM). These derivatives may possess potential for intervention with inflammatory and allergic diseases.
Current research leads to the assumption that drugs affecting more than one target could result in a more efficient treatment of diseases and fewer safety concerns. Administration of drugs inhibiting only one branch of the arachidonic acid cascade is usually accompanied by side effects. We therefore designed and synthesized a library of hybrid molecules incorporating an imidazo[1,2-a]pyridine and an urea moiety as novel soluble epoxide hydrolase (sEH)/5-lipoxygenase (5-LO) dual inhibitors. Evaluation of the compounds was accomplished by in vitro testing using recombinant enzyme assays.
Compounds that inhibit 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of leukotrienes (LTs), possess potential for the treatment of inflammatory and allergic diseases as well as of atherosclerosis and cancer. Here we present the design and the synthesis of a series of novel 2-amino-5-hydroxyindoles that potently inhibit isolated human recombinant 5-LO as well as 5-LO in polymorphonuclear leukocytes, exemplified by ethyl 2-[(3-chlorophenyl)amino]-5-hydroxy-1H-indole-3-carboxylate (3n, IC(50) value congruent with 300 nM). Introduction of an aryl/arylethylamino group or 4-arylpiperazin-1-yl residues into position 2 of the 5-hydroxyindoles was essential for biological activity. Whereas the 4-arylpiperazin-1-yl derivatives were more potent in cell-free assays as compared to intact cell test systems, aryl/arylethylamino derivatives inhibited 5-LO activity in intact cells and cell-free assays almost equally well. On the basis of their 5-LO inhibitory properties, these novel 2-amino-5-hydroxyindoles represent potential candidates for the pharmacological intervention with LT-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.