The trend toward miniaturization of metallic microparts results in the need of high-precision production methods. Major challenges are, for example, downsizing of tools and adequate positioning accuracy within blanking. Starting from a novel approach for tool miniaturization and its realization, the aim of this study is showing the assessment of tool sensitivity against process errors. Etched silicon punches were used for blanking copper foils, where outbreaks occurred at the cutting edge. Hence, tool stresses during blanking were analyzed by finite element (FE) method in dependency of defined positioning and process errors and evaluated concerning tool stresses and sheared edge quality.
In the automotive sector the application of advanced high strength steels (AHSS) for structural and safety relevant components plays an important role. Typical manufacturing processes concerning these parts are bending and cutting operations. However, the forming and cutting potential of these steel grades is different compared to conventional steels, as the process behaviour is changing. For an improved workpiece quality the fundamental knowledge of the damage and failure mechanisms is essential. This study presents a methodology for the analysis of AHSS in bending and out-of-plane shearing operations. Two micro alloyed high strength steels are investigated within this work. First results are presented concerning material characterisation by tensile tests, the material performance in air bending tests and the development of a modular punching tool. The study is closed by summarizing the damage behaviour along the process chain considering both bending and cutting. This shows the applicability of the presented methodology for analysing the process behaviour with respect to occurring failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.