AMP-activated protein kinase (AMPK) senses changes in the intracellular AMP/ATP ratio, switching off energy-consuming processes and switching on catabolic pathways in response to energy depletion. Here, we show that AMPK down-regulates rRNA synthesis under glucose restriction by phosphorylating the RNA polymerase I (Pol I)-associated transcription factor TIF-IA at a single serine residue (Ser-635). Phosphorylation by AMPK impairs the interaction of TIF-IA with the TBP-containing promoter selectivity factor SL1, thereby precluding the assembly of functional transcription initiation complexes. Mutation of Ser-635 compromises down-regulation of Pol I transcription in response to low energy supply, supporting that activation of AMPK adapts rRNA synthesis to nutrient availability and the cellular energy status.
The aim of this study was to understand how molecular determinants of epithelial cells influence initial infection by herpes simplex virus type 1 (HSV-1). Upon infection of the epithelial MDCKII cell line, enhanced association of virus particles with cells forming actin protrusions was observed, suggesting a putative role of actin dynamics in HSV-1 infection. Thus, the impact of the small Rho-like GTPases Rac1, Cdc42 and RhoA acting as key regulators of actin dynamics was addressed. Endogenous Rac1 and Cdc42 were temporarily activated at 15 and 30 min after HSV-1 infection. When constitutively active Cdc42 or Rac1 mutants were expressed transiently, a significant decrease in infectivity was observed, whereas expression of RhoA mutants had no influence. Furthermore, dominant-negative Cdc42 led to decreased infectivity, whereas dominant-negative Rac1 had no effect. So far, the study of potential effectors indicated that Rac1/Cdc42 mutants inhibited infectivity independently of p21-activated kinase (Pak1). The inhibitory effect of Rac1/Cdc42 mutant expression on HSV-1 infection was characterized further and it was found that binding, internalization and transport of HSV-1 were not affected by expression of Rac1/Cdc42 mutants. Thus, these results provide the first evidence for a role of Rac1/Cdc42 signalling during early HSV-1 infection and suggest a mechanism relying on virus-induced regulation of Rac1/Cdc42 activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.